

Chapter 1

CALCULATION AND NUMBERS

Reading and writing of numbers upto one billion.

We have studied and familiar with the number upto ten million in previous classes. Now we shall study and write the numbers upto one billion.

Billion	Million			Thousands			Units		
Billion	Hundred Million	Ten Million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units

One billion = one thousand million:

We know that place of number is shown in four blanks.

First blank = units second blank = Thousand

Third blank = Million Fourth blank = Billion

Example: Write the following numbers into million and billion. 8459413572
Solution first of all separate the numbers in four boxes. 8,459,413,572

Billion	Million			Thousands			Units		
Billion	Hundred Million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
8	4	5	9	4	1	3	5	7	2

Number in words:

Eight billion four hundred fifty nine million, four hundred thirteen thousands, five hundred seventy two.

Example: Write the numbers in million and billion. 9375632512

Solution: first of all separate the numbers in four boxes. 9,375,632,512

Billion	Million			Thousands			Units		
Billion	Hundred Million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
9	3	7	5	6	3	2	5	1	2

Number in words:

Nine billion three hundred seventy five million, six hundred thirty two thousands, five hundred twelve.

Number in digits

i Four billions eight hundred twelve million, three hundred ninety two thousand one hundred and two. 4,812,392,102

Mayari MATHS For Class Five

Project Director

Ghulam Shabeer Attari

Project Manager

Muhammad Saleem Qadri

Writer

S.M Akram Naqvi

Translator

Muhammad Ali Veesar

Composer

Imran Ali Mirani

Designer

Asif Ali Lakhvi

**Zam Zam Science Publications
Karachi Pakistan**

ii) Seven hundred thirteen million, eight hundred seventy one thousands two hundred fifty. $713,871,250$

EXERCISE 1.1

Q.1) Write the numbers in words:

1) **28,341,495**

Twenty eight million three hundred forty one thousand four hundred ninety five.

2) **244,873,445**

Two hundred forty four million eight hundred seventy three thousand four hundred forty five.

3) **191,825,100**

One hundred ninety one million eight hundred twenty five thousand one hundred.

4) **705,245,126**

Seven hundred five million two hundred forty five thousand one hundred twenty six.

Q.2) Write the numbers in boxes.

1) **412592512**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
4	1	2	5	9	2	5	1	2

2) **176150321**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
1	7	6	1	5	0	3	2	1

3) **435050020**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
4	3	5	0	5	0	0	2	0

4) **45234505**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
-	4	5	2	3	4	5	0	5

5) **834379082**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
8	3	4	3	7	9	0	8	2

6) **67863050**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
-	6	7	8	6	3	0	5	0

7) **70000000**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
-	7	0	0	0	0	0	0	0

8) **67799581**

Hundred million	Ten million	Million	Hundred Thousand	Ten Thousand	Thousands	Hundreds	Tens	Units
-	6	7	7	9	9	5	8	1

Q.3) Write the numbers in digits.

1) Two million, four thousand, six hundred, ninety one.

Ans: **2,004,691**

2) Two billion, five hundred forty two million. Five hundred seventy two thousand and thirty four.

Ans: **2,542,572,034**

3) Six hundred seventy nine million, eight hundred nineteen thousand and twenty.

Ans: **679,819,020**

4) Nine billion, seven hundred eighty six million, three hundred five thousand four hundred and one.

Ans: **9,786,305,401**

5 Four billion one hundred fifty two million, five hundred sixty two thousand.

Ans: 4,152,562,000

7 Eight billion, three hundred twenty seven million.

Ans: 8,327,000,000

6 Three million, five hundred forty two thousand, one hundred and six.

Ans: 3,542,106

8 Four million Nine hundred seventy three thousand one hundred fourteen.

Ans: 4,973,144

Addition of numbers upto billion

The way of addition natural number is always same units with units, tens with ten and hundred with hundreds.

Important Information

In addition numbers are written according to their number place and then are added.

Example: Add 495459210 with 853795125

Hundred Million	Ten Million	Million	Hundred thousand	Ten thousand	Thousands	Hundred	Tens	Units
4	9	5	4	5	9	2	1	0
+ 8	5	3	7	9	5	1	2	5

13	4	9	2	5	4	3	3	5
----	---	---	---	---	---	---	---	---

Hence: $495459210 + 853795125 = 1349254335$

Example: Add 2485372 with 1326650

$$\begin{array}{r} 2485372 \\ + 1326650 \\ \hline 3812022 \end{array}$$

Example: Add 9463152 with 7935216

$$\begin{array}{r} 9463152 \\ + 7935216 \\ \hline 17398368 \end{array}$$

Important Information

In addition numbers are written according to their number place and then are added.

EXERCISE 1.2

Q.1 Perform the indicated operation the following:

$$\begin{array}{r} 1 \quad 5389725 \\ + 1795675 \\ \hline 7185400 \end{array} \quad \begin{array}{r} 2 \quad 76132042 \\ + 64852503 \\ \hline 140984545 \end{array} \quad \begin{array}{r} 3 \quad 345322 \\ + 241231 \\ \hline 586553 \end{array} \quad \begin{array}{r} 4 \quad 3162402 \\ + 2373237 \\ \hline 5535639 \end{array}$$

$$\begin{array}{r} 5 \quad 3444525 \\ + 4135523 \\ \hline 7580048 \end{array} \quad \begin{array}{r} 6 \quad 68342152 \\ + 52445211 \\ \hline 120787363 \end{array} \quad \begin{array}{r} 7 \quad 3251244 \\ + 50721323 \\ \hline 53972567 \end{array} \quad \begin{array}{r} 8 \quad 43753402 \\ + 41788211 \\ \hline 85541613 \end{array}$$

$$\begin{array}{r} 9 \quad 3366720 \\ + 5905543 \\ \hline 9272263 \end{array} \quad \begin{array}{r} 10 \quad 5319360 \\ + 607267 \\ \hline 5926627 \end{array} \quad \begin{array}{r} 11 \quad 438967722 \\ + 576169798 \\ \hline 1015137520 \end{array} \quad \begin{array}{r} 12 \quad 68018832 \\ + 84011365 \\ \hline 152030197 \end{array}$$

$$\begin{array}{r} 13 \quad 693624 \\ + 154635 \\ \hline 848259 \end{array} \quad \begin{array}{r} 14 \quad 493529 \\ + 367615 \\ \hline 861144 \end{array} \quad \begin{array}{r} 15 \quad 546811 \\ + 353642 \\ \hline 900453 \end{array} \quad \begin{array}{r} 16 \quad 452611 \\ + 358591 \\ \hline 811202 \end{array}$$

$$\begin{array}{r} 17 \quad 311121 \\ + 988722 \\ \hline 1299843 \end{array} \quad \begin{array}{r} 18 \quad 492193 \\ + 621541 \\ \hline 1113734 \end{array} \quad \begin{array}{r} 19 \quad 608906 \\ + 512627 \\ \hline 1121533 \end{array} \quad \begin{array}{r} 20 \quad 758501 \\ + 889228 \\ \hline 1647729 \end{array}$$

ii Add the following:

$$\begin{array}{r} 1 \quad 81073085 + 21254359 = 102,327,444 \\ 2 \quad 2543894 + 35184496 = 37,728,390 \end{array}$$

$$\begin{array}{r} 3 \quad 567258 + 373267 = 940,525 \\ 4 \quad 25066432 + 43326514 = 68,392,946 \end{array}$$

$$\begin{array}{r} 5 \quad 759120 + 634822 = 1,393,942 \\ 6 \quad 40173432 + 78829033 = 119,002,465 \end{array}$$

Subtraction of numbers upto billion:

Example: subtract 357821 to 945678

Solution:

Hundred thousand	Ten thousands	Thousands	Hundreds	Tens	Units
9	4	5	6	7	8
- 3	5	7	8	2	1

5	8	7	8	5	7
---	---	---	---	---	---

OR $357821 - 945678 = 587857$

Subtract

Example: 24685327 from 55663504

Solution
$$\begin{array}{r} 55663504 \\ - 24685327 \\ \hline 30978177 \end{array}$$

Subtract

Example: 10754937 from 35851059

Solution
$$\begin{array}{r} 35851059 \\ - 10754937 \\ \hline 25096122 \end{array}$$

OR $24685327 - 55663504 = 30978177$

OR $10754937 - 35851059 = 25096122$

EXERCISE 1.3

Q.1 Find the difference.

1	1625739	2	493267	3	524314	4	1975672
-	783250	-	301530	-	172998	-	854392
	842489		191737		351316		1121280

5	629438	6	6784567	7	79643219	8	386594320
-	75726	-	4632190	-	60324312	-	119994964
	553712		2152377		19318907		266599356

9	33333444	10	629938	11	9721830	12	92139302
-	11229777	-	512726	-	7927931	-	85466831
	22103667		117212		1793899		6672471

Q.2 Subtract the following.

1	326329	2	785972	2	232625	4	422137
Sol:	785972	Sol:	422137	-	326329	-	232625
	459643		189512				

3	208070	3	388776	4	125336	5	526329
Sol:	388776	Sol:	526329	-	208070	-	125336
	180706		400993				

5 763249 979615

Sol:
$$\begin{array}{r} 979615 \\ - 763249 \\ \hline 216366 \end{array}$$

6 3558521 4321218

Sol:
$$\begin{array}{r} 4321218 \\ - 3558521 \\ \hline 0762697 \end{array}$$

Multiplication of Numbers

Multiply the numbers with 10, 100 an 1000

Example: 4959876 by 100

Solution
$$\begin{array}{r} 4959876 \\ \times 100 \\ \hline 0000000 \\ 0000000 \times \\ 4959876 \times \times \\ \hline 495987600 \end{array}$$

Example: 152152 by 10

Solution
$$\begin{array}{r} 152152 \\ \times 10 \\ \hline 000000 \\ 152152 \times \\ \hline 1521520 \end{array}$$

Multiplication of a digit number by 2 digit and 3 digit number.

Example: 967252 by 105

Solution
$$\begin{array}{r} 967252 \\ \times 105 \\ \hline 4836260 \\ 000000 \times \\ 967252 \times \times \\ \hline 101561460 \end{array}$$

Example: 415799 by 35

Solution
$$\begin{array}{r} 415799 \\ \times 35 \\ \hline 2078995 \\ 1247397 \times \\ \hline 14552965 \end{array}$$

EXERCISE 1.4

Q.1 Perform the multiplication.

1 915859×100

Sol:
$$\begin{array}{r} 915859 \\ \times 100 \\ \hline 000000 \\ 000000 \times \\ 915859 \times \times \\ \hline 91585900 \end{array}$$

2 267729×1000

Sol:
$$\begin{array}{r} 267729 \\ \times 1000 \\ \hline 000000 \\ 000000 \times \\ 000000 \times \times \\ 267729 \times \times \times \\ \hline 267729000 \end{array}$$

3 1995×10

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 1995 \\ \times \quad 10 \\ \hline 00000 \\ +1995 \times \\ \hline 19950 \end{array} \end{array}$$

4 280916×100

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 280916 \\ \times \quad 100 \\ \hline 000000 \\ 000000 \times \\ +280916 \times \times \\ \hline 28091600 \end{array} \end{array}$$

5 487623×91

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 487623 \\ \times \quad 91 \\ \hline 487623 \\ +4388607 \times \\ \hline 44373693 \end{array} \end{array}$$

6 422331×83

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 422331 \\ \times \quad 83 \\ \hline 1266993 \\ +3378648 \times \\ \hline 35053473 \end{array} \end{array}$$

7 532322×241

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 532322 \\ \times \quad 241 \\ \hline 532322 \\ 2129288 \times \\ +1064644 \times \times \\ \hline 128289602 \end{array} \end{array}$$

8 331792×37

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 331792 \\ \times \quad 37 \\ \hline 2322544 \\ +995376 \times \\ \hline 12276304 \end{array} \end{array}$$

9 487322×40

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 487322 \\ \times \quad 40 \\ \hline 000000 \\ +1949288 \times \\ \hline 19492880 \end{array} \end{array}$$

10 124733×125

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 124733 \\ \times \quad 125 \\ \hline 623665 \\ 249466 \times \\ +124733 \times \times \\ \hline 15591625 \end{array} \end{array}$$

11 212784×235

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 212784 \\ \times \quad 235 \\ \hline 1063920 \\ 638352 \times \\ +425568 \times \times \\ \hline 50004240 \end{array} \end{array}$$

12 429735×745

$$\begin{array}{r} \text{Sol:} \\ \begin{array}{r} 429735 \\ \times \quad 745 \\ \hline 2148675 \\ 1718940 \times \\ +3008145 \times \times \\ \hline 32015275 \end{array} \end{array}$$

Division of numbers and functions:

Division of 6 digit number by 2 digit and three digit numbers.

Example: Divide 427935 by 235

$$\begin{array}{r} 1821 \\ 235 \overline{)427935} \\ -235 \\ \hline 1929 \\ -1880 \\ \hline 493 \\ -470 \\ \hline 235 \\ -235 \\ \hline 0 \end{array}$$

Division	= 235
Dividend	= 427935
Answer	= 1821
Remainder	= 0

Example Divide 189375 by 125

$$\begin{array}{r} 1515 \\ 125 \overline{)189375} \\ -125 \\ \hline 643 \\ -625 \\ \hline 187 \\ -125 \\ \hline 625 \\ -625 \\ \hline 0 \end{array}$$

Divisor	= 125
Dividend	= 189375
Answer	= 1515
Remainder	= 0

Example Divide 537809 by 35

$$\begin{array}{r}
 15365 \\
 35 \overline{)537809} \\
 -35 \\
 \hline
 187 \\
 -175 \\
 \hline
 128 \\
 -105 \\
 \hline
 230 \\
 -210 \\
 \hline
 209 \\
 -175 \\
 \hline
 34
 \end{array}$$

Divisor = 35
 Dividend = 537809
 Answer = 15365
 Remainder = 34

EXERCISE 1.5

Q.1: Perform the division the following:

1 212784 ÷ 52

$$\begin{array}{r}
 4092 \\
 52 \overline{)212784} \\
 -2080 \\
 \hline
 478 \\
 -468 \\
 \hline
 104 \\
 -104 \\
 \hline
 000
 \end{array}$$

Ans: 4092

2 312920 ÷ 40

$$\begin{array}{r}
 7823 \\
 40 \overline{)312920} \\
 -280 \\
 \hline
 329 \\
 -320 \\
 \hline
 92 \\
 -80 \\
 \hline
 120 \\
 -120 \\
 \hline
 000
 \end{array}$$

Ans: 7823

3 254375 ÷ 275

Sol:

$$\begin{array}{r}
 925 \\
 275 \overline{)254375} \\
 -2475 \\
 \hline
 687 \\
 -550 \\
 \hline
 1375 \\
 -1375 \\
 \hline
 0000
 \end{array}$$

Ans: 925

4 392604 ÷ 12

Sol:

$$\begin{array}{r}
 32717 \\
 12 \overline{)392604} \\
 -36 \\
 \hline
 32 \\
 -24 \\
 \hline
 86 \\
 -84 \\
 \hline
 20 \\
 -12 \\
 \hline
 84 \\
 -84 \\
 \hline
 00
 \end{array}$$

Ans: 32717

5 718201 ÷ 109

Sol:

$$\begin{array}{r}
 6589 \\
 109 \overline{)718201} \\
 -654 \\
 \hline
 642 \\
 -545 \\
 \hline
 970 \\
 -872 \\
 \hline
 981 \\
 -981 \\
 \hline
 000
 \end{array}$$

Ans: 6589

6 274470 ÷ 35

Sol:

$$\begin{array}{r}
 7842 \\
 35 \overline{)274470} \\
 -245 \\
 \hline
 294 \\
 -280 \\
 \hline
 147 \\
 -140 \\
 \hline
 70 \\
 -70 \\
 \hline
 00
 \end{array}$$

Ans: 7842

7 914056 ÷ 572

Sol:

$$\begin{array}{r}
 1598 \\
 572 \overline{)914056} \\
 -572 \\
 \hline
 3420 \\
 -2860 \\
 \hline
 5605 \\
 -5148 \\
 \hline
 4576 \\
 -4576 \\
 \hline
 0000
 \end{array}$$

Ans: 1598

8 570152 ÷ 124

Sol:

$$\begin{array}{r}
 4598 \\
 124 \overline{)570152} \\
 -496 \\
 \hline
 741 \\
 -620 \\
 \hline
 1215 \\
 -1116 \\
 \hline
 992 \\
 -992 \\
 \hline
 000
 \end{array}$$

Ans: 4598

9 $337488 \div 89$

Sol:

$$\begin{array}{r} 3792 \\ 89 \overline{)337488} \\ -267 \\ \hline 704 \\ -623 \\ \hline 818 \\ -801 \\ \hline 178 \\ -178 \\ \hline 000 \end{array}$$

Ans: 3792

10 $371784 \div 84$

Sol:

$$\begin{array}{r} 4426 \\ 84 \overline{)371784} \\ -336 \\ \hline 357 \\ -336 \\ \hline 218 \\ -168 \\ \hline 504 \\ -504 \\ \hline 000 \end{array}$$

Ans: 4426

11 $253593 \div 19$

Sol:

$$\begin{array}{r} 13347 \\ 19 \overline{)253593} \\ -19 \\ \hline 63 \\ -57 \\ \hline 65 \\ -57 \\ \hline 89 \\ -76 \\ \hline 133 \\ -133 \\ \hline 000 \end{array}$$

Ans: 13347

12 $421960 \div 385$

Sol:

$$\begin{array}{r} 1096 \\ 385 \overline{)421960} \\ -3850 \\ \hline 3696 \\ -3465 \\ \hline 2310 \\ -2310 \\ \hline 0000 \end{array}$$

Ans: 1096

13 $782314 \div 20$

Sol:

$$\begin{array}{r} 39115.7 \\ 20 \overline{)782314} \\ -60 \\ \hline 182 \\ -180 \\ \hline 23 \\ -20 \\ \hline 114 \\ -100 \\ \hline 140 \\ -140 \\ \hline 000 \end{array}$$

Ans: 39115.7

14 $792325 \div 205$

Sol:

$$\begin{array}{r} 3865 \\ 205 \overline{)792325} \\ -615 \\ \hline 1773 \\ -1640 \\ \hline 1332 \\ -1230 \\ \hline 1025 \\ -1025 \\ \hline 0000 \end{array}$$

Ans: 3865

15 $537556 \div 92$

Sol:

$$\begin{array}{r} 5843 \\ 92 \overline{)537556} \\ -460 \\ \hline 775 \\ -736 \\ \hline 395 \\ -368 \\ \hline 276 \\ -276 \\ \hline 000 \end{array}$$

Ans: 5843

Function of BODMAS Rules:

Bracket	B	=	()
OF	O	=	Multiply
Divide	D	=	÷
Multiply	M	=	×
Add	A	=	+
Subtract	S	=	-

Important Information

First of all the process of division is performed then multiplication.

Example:

$$35 \times 12 \div 6$$

$$\text{First of all the process of division} = 35 \times 2$$

$$\text{Next Multiplication} = 70$$

Example:

$$(18 \div 2) \times 4 + 6 - 5$$

$$\text{First of all the process of division} = 9 \times 4 + 6 - 5$$

$$\text{Next Multiplication} = 36 + 6 - 5$$

$$\text{Then Addition} = 42 - 5$$

$$\text{Last subtraction} = 37$$

EXERCISE 1.6

Q.1: Solve according the BODMAS rule the following:

1 $(28 + 4) \times 6 \div 2 - 9$

Sol: $= (28 + 4) \times 6 \div 2 - 9$
 $= 32 \times 6 \div 2 - 9$
 $= 32 \times 3 - 9$
 $= 96 - 9$
 $= 85$ Ans:

2 $2 + 2 \times 2 \div 2 - 2$

Sol: $= 2 + 2 \times 2 \div 2 - 2$
 $= 2 + 2 \times 1 - 2$
 $= 2 + 2 - 2$
 $= 4 - 2$
 $= 2$ Ans:

3 $3 + (28 \div 7) \times 2 - 1$

Sol: $= 3 + (28 \div 7) \times 2 - 1$
 $= 3 + 4 \times 2 - 1$
 $= 3 + 8 - 1$
 $= 11 - 1$
 $= 10$ Ans:

4 $(18 \div 3) \times 5 + 4 - 25$

Sol: $= (18 \div 3) \times 5 + 4 - 25$
 $= 6 \times 5 + 4 - 25$
 $= 30 + 4 - 25$
 $= 34 - 25$
 $= 9$ Ans:

5 $(6 \times 5) \div 6$

Sol: $= (6 \times 5) \div 6$
 $= 36 \div 6$
 $= 6$

6 $(25 \div 5) \times 8 + 6 - 12$

Sol: $= (25 \div 5) \times 8 + 6 - 12$
 $= 5 \times 8 + 6 - 12$
 $= 40 + 6 - 12$
 $= 46 - 12$
 $= 34$

7 $(54 \times 150 \div 3) + 49$

Sol: $= (54 \times 150 \div 3) + 49$
 $= (54 \times 50) + 49$
 $= 2700 + 49$
 $= 2749$ Ans:

8 $60 + (72 \div 8) + 3 \times 5$

Sol: $= 60 + (72 \div 8) + 3 \times 5$
 $= 60 + 9 + 3 \times 5$
 $= 60 + 9 + 15$
 $= 84$ Ans:

9 $144 \div 12 + 5 \times 6$

Sol: $= 144 \div 12 + 5 \times 6$
 $= 12 + 5 \times 6$
 $= 12 + 30$
 $= 42$ Ans:

10 $80 - (70 \div 14 - 2)$

Sol: $= 80 - (70 \div 14 - 2)$
 $= 80 - (5 - 2)$
 $= 80 - 3$
 $= 77$

11 $21 + (81 \div 9) + 4 \times 6$

Sol: $= 21 + (81 \div 9) + 4 \times 6$
 $= 21 + 9 + 4 \times 6$
 $= 21 + 9 + 24$
 $= 54$ Ans:

12 $121 \div 11 + 15 \times 6$

Sol: $= 121 \div 11 + 15 \times 6$
 $= 11 + 15 \times 6$
 $= 11 + 90$
 $= 101$ Ans:

To prove the multiplication rule:

There are two rules of multiplication

i Multiplication over Addition.

ii Multiplication with multiplication over addition.

In first rule of multiplication two numbers are added in bracket the outer number is multiplied in answer. In second rule two pairs of multiplication are solved the results are added. The result in both rules is same.

(I) Example Prove that. $10 \times (13 + 5) = (10 \times 13) + (10 \times 5)$

Solution: $10 \times (13 + 5) = (10 \times 13) + (10 \times 5)$
 $10 \times (18) = 130 + 50$
 $180 = 180$
 L.H.S = R.H.S

Proved $10 \times (13 + 5) = (10 \times 13) + (10 \times 5)$

(ii) Example. Prove that $11 \times (13 - 7) = (11 \times 13) - (11 \times 7)$

Solution: $11 \times (13 - 7) = (11 \times 13) - (11 \times 7)$
 $11 \times (8) = 143 - 77$
 $66 = 66$
 L.H.S = R.H.S

Proved $11 \times (13 - 7) = (11 \times 13) - (11 \times 7)$

(iii) Example prove that $6 \times (4 + 5) = (6 \times 4) + (6 \times 5)$

Solution: $6 \times (4 + 5) = (6 \times 4) + (6 \times 5)$
 $6 \times 9 = 24 + 30$
 $54 = 54$
 L.H.S = R.H.S

Proved $6 \times (4 + 5) = (6 \times 4) + (6 \times 5)$

→ EXERCISE 1.7 ←

Prove:

1 $14 \times (6+3) = (14 \times 6) + (14 \times 3)$

2 $13 \times (10+6) = (13 \times 10) + (13 \times 6)$

Sol: LHS RHS

$$14 \times (6+3) = (14 \times 6) + (14 \times 3)$$

$$14 \times 9 = 84 + 42$$

$$126 = 126$$

Hence proved LHS = RHS

Sol: LHS RHS

$$13 \times (10+6) = 130 + 78$$

$$13 \times 16 = 208$$

$$208 = 208$$

Hence proved LHS = RHS

3 $(14-9) \times 12 = (14 \times 12) - (9 \times 12)$

4 $(12+6) \times 8 = (12 \times 8) + (6 \times 8)$

Sol: LHS RHS

$$(14-9) \times 12 = (14 \times 12) - (9 \times 12)$$

$$5 \times 12 = 168 - 108$$

$$60 = 60$$

Hence proved LHS = RHS

Sol: LHS RHS

$$(12+6) \times 8 = (12 \times 8) + (6 \times 8)$$

$$18 \times 8 = 96 + 48$$

$$144 = 144$$

Hence proved LHS = RHS

5 $5(17-13) = (5 \times 17) - (5 \times 13)$

6 $(26-14) \times 6 = (26 \times 6) - (14 \times 6)$

Sol: LHS RHS

$$5(4) = 85 - 65$$

$$20 = 20$$

Hence proved LHS = RHS

Sol: LHS RHS

$$(26-14) \times 6 = (26 \times 6) - (14 \times 6)$$

$$12 \times 6 = 156 - 84$$

Hence proved LHS = RHS

7 $12 \times (6+3) = (12 \times 6) + (12 \times 3)$

8 $(9+5) \times 14 = (9 \times 14) + (5 \times 14)$

Sol: LHS RHS

$$12 \times (6+3) = (12 \times 6) + (12 \times 3)$$

$$12 \times 9 = 72 + 36$$

$$108 = 108$$

Hence proved LHS = RHS

Sol: LHS RHS

$$(9+5) \times 14 = (9 \times 14) + (5 \times 14)$$

$$14 \times 14 = 126 + 70$$

$$196 = 196$$

Hence proved LHS = RHS

9 $15(13-5) = (15 \times 13) - (15 \times 5)$

10 $10 \times (12-3) = (10 \times 12) - (10 \times 3)$

Sol: LHS RHS

$$15(13-5) = (15 \times 13) - (15 \times 5)$$

$$15 \times 8 = 195 - 75$$

$$120 = 120$$

Hence proved LHS = RHS

Sol: LHS RHS

$$10 \times (12-3) = (10 \times 12) - (10 \times 3)$$

$$10 \times 9 = 120 - 30$$

$$90 = 90$$

Hence proved LHS = RHS

Addition Subtraction, Multiplication and division of daily life problems

→ EXERCISE 1.8 ←

1 There are 392604 oranges in 12 boxes, find the number of oranges in one box.

Sol:

There are 392604 oranges in 12 boxes, find the number of oranges in one box.

Then,

$$\begin{array}{r} 32717 \\ 12 \overline{)392604} \\ -36 \\ \hline 32 \\ -24 \\ \hline 86 \\ -84 \\ \hline 20 \\ -12 \\ \hline 84 \\ -84 \\ \hline 00 \end{array}$$

Ans: There are 32717 oranges in one box.

2 A library is full with 32435 books, if there are 237 shelves then find the number of books in each shelf.

Sol:

There are 32435 books in 237 shelves in a library.

Book in one shelf = ?

Then,

$$\begin{array}{r} 136.856 \\ 237 \overline{)32435} \\ -237 \\ \hline 873 \\ -711 \\ \hline 1625 \\ -1422 \\ \hline 2030 \\ -1896 \\ \hline 1340 \\ -1185 \\ \hline 1550 \\ -1422 \\ \hline 128 \end{array}$$

Ans: There are 136.856 books in one shelf.

3) A car is cost of Rs 594510, if Jahanzeb has Rs 394521 How many rupees he has required to purchase this car?

Sol:

The cost of a car is Rs:594510.
Amount of Jahanzeb=Rs:394521.

Amount required to purchase a car = ?

Then,

$$\begin{array}{r} 594510 \\ -394521 \\ \hline 199989 \end{array}$$

Ans: Jahanzeb will require 199989 rupees to purchase a car

5) A stadium is consisted of 224378 seats, if 1575 more onlookers enter in stadium, Tell the total numbers of onlookers?

Sol:

The seats in a stadium=224378.
1575 more onlookers enter in stadium.

Total numbers of no lookers = ?
Then,

$$\begin{array}{r} 224378 \\ + 1575 \\ \hline 225953 \end{array}$$

Ans: The total numbers of no lookers = 225953.

4) If the cost of a roof is Rs 995824 then find the cost of 20 roofs.

Sol:

The cost of a car is Rs:594510.
Amount of Jahanzeb=Rs:394521.
Amount required to purchase a car = ?

Then,

$$\begin{array}{r} 995824 \\ \times 20 \\ \hline 000000 \\ +1991648 \times \\ \hline 19916480 \end{array}$$

Ans: The cost of 20 roofs = 19916480

6) There are 991 rows in a hall, Total number of people is 221373. Then find number of people in each row.

Sol:

There are 991 rows in a hall.
Total numbers of people is 221373 in 991 rows.

Number of people in each row = ?

Then,

$$\begin{array}{r} 223.38 \\ 991 \boxed{221373} \\ -1982 \\ \hline 2317 \\ -1982 \\ \hline 3353 \\ -2973 \\ \hline 3800 \\ -2973 \\ \hline 8270 \\ -7928 \\ \hline 3420 \\ -2973 \\ \hline 447 \end{array}$$

Ans: There are 223.38 people in each row.

7) Ali has 756795 rupees. He gave Rs 58972 to his friend as loan. How many rupees he has now.

Sol:

Ali has 756795 rupees.
He gave Rs. 58972 to his friend as loan.
Remaining amount = ?

Then,

$$\begin{array}{r} 756795 \\ -58972 \\ \hline 697823 \end{array}$$

Ans: The remaining amount of Ali is Rs. 697823.

9) A company makes 295845 shoes pairs, in 33 days. How many shoe pair are made by company in a day.

Sol:

A company makes 295845 shoes pair in 33 days. Shoes pairs are made by a company in a day=?

Then,

$$\begin{array}{r} 8965 \\ 33 \boxed{295845} \\ -264 \\ \hline 318 \\ -297 \\ \hline 214 \\ -198 \\ \hline 165 \\ -165 \\ \hline 000 \end{array}$$

Ans: a company is made 8965 shoes pairs in one day.

8) A drum is filled with 93750 liters of petrol. How much liters of petrol in 375 drum.

Sol:

A drum is filled with 93750 litres of petrol.

Petrol in 375 drums = ?

Then,

$$\begin{array}{r} 93750 \\ \times 375 \\ \hline 468750 \\ 656250 \times \\ 281250 \times \times \\ \hline 35156250 \end{array}$$

Ans: The is 35156250 litres of petrol in 375 drums.

10) How much cost yasmeen saved if she bought a motorcycle in 6430 rupees of 286313.

Sol:

Saving amount of Yasmeen = ?
Price of a motorcycle = 64300
Total amount of Yasmen = 286313
Then,

$$\begin{array}{r} 286313 \\ -64300 \\ \hline 222013 \end{array}$$

Ans: Yasmeen saved Rs.222013 rupees.

Greatest common divisor and least common multiple G.C.D

G.C.D means the greatest number that can divide all given number. It can be found two ways:

- i By factorization method
- ii By Division method.

We have learnt the greatest common divisor in previous classes let's learn more.

Example: G.C.D by factorization. i 18, 24 ii 16,48,56 iii 36, 60

i 18, 24

$$\begin{array}{l} \text{Multiplication of 24} = 2 \times 2 \times 2 \times 3 \quad \begin{array}{c} 2 \mid 18 \\ 3 \mid 9 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 24 \\ 2 \mid 12 \\ 3 \mid 6 \\ \hline 1 \end{array} \\ \text{Multiplication of 18} = 2 \times 3 \times 3 \quad \begin{array}{c} 3 \mid 3 \\ \hline 1 \end{array} \\ \text{Common factors} = 2 \times 3 \\ \text{G.C.D} = 6 \end{array}$$

ii 16,48,56

$$\begin{array}{l} \text{Multiplication of 48} = 2 \times 2 \times 2 \times 2 \quad \begin{array}{c} 2 \mid 56 \\ 2 \mid 28 \\ 2 \mid 14 \\ 7 \mid 7 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 48 \\ 2 \mid 24 \\ 2 \mid 12 \\ 3 \mid 6 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 16 \\ 2 \mid 8 \\ 2 \mid 4 \\ 2 \mid 2 \\ \hline 1 \end{array} \\ \text{Multiplication of 16} = 2 \times 2 \times 2 \times 2 \times 3 \quad \begin{array}{c} 2 \mid 28 \\ 2 \mid 14 \\ 7 \mid 7 \\ \hline 1 \end{array} \\ = 2 \times 2 \times 2 \times 7 \quad \begin{array}{c} 2 \mid 7 \\ 7 \mid 7 \\ \hline 1 \end{array} \\ \text{Common factors} = 2 \times 2 \times 2 \\ \text{G.C.D} = 8 \end{array}$$

iii 36, 60

$$\begin{array}{l} \text{Multiplication of 60} = 2 \times 2 \times 3 \times 5 \quad \begin{array}{c} 2 \mid 36 \\ 2 \mid 18 \\ 3 \mid 9 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 60 \\ 2 \mid 30 \\ 3 \mid 15 \\ \hline 1 \end{array} \\ \text{Multiplication of 36} = 2 \times 2 \times 3 \times 3 \quad \begin{array}{c} 2 \mid 18 \\ 3 \mid 9 \\ \hline 1 \end{array} \\ \text{Common factors} = 2 \times 2 \times 3 \\ \text{G.C.D} = 12 \end{array}$$

EXERCISE 2.1

Q.1: Find the G.C.D by factorization.

1 10, 15, 25

$$\begin{array}{c} \text{Sol:} \quad \begin{array}{c} 2 \mid 10 \\ 5 \mid 5 \\ \hline 1 \end{array} \quad \begin{array}{c} 3 \mid 15 \\ 5 \mid 5 \\ \hline 1 \end{array} \quad \begin{array}{c} 5 \mid 25 \\ 5 \mid 5 \\ \hline 1 \end{array} \end{array}$$

Factors of 10 = 2 x 5

Factors of 15 = 3 x 5

Factors of 25 = 5 x 5

The common factors of 10, 15 and 25 is 5. Then G.C.D of 10, 15 and 25 is 5

2 40, 20, 35

$$\begin{array}{c} \text{Sol:} \quad \begin{array}{c} 2 \mid 40 \\ 2 \mid 20 \\ 2 \mid 10 \\ 5 \mid 5 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 20 \\ 2 \mid 10 \\ 5 \mid 5 \\ \hline 1 \end{array} \quad \begin{array}{c} 5 \mid 35 \\ 7 \mid 7 \\ \hline 1 \end{array} \end{array}$$

Factors of 40 = 2 x 2 x 2 x 5

Factors of 20 = 2 x 2 x 5

Factors of 35 = 5 x 7

The common factors of 40, 20 and 35 is 5.

Ans: G.C.D of 40, 20 and 35 is 5

3 24, 36, 48

$$\begin{array}{c} \text{Sol:} \quad \begin{array}{c} 2 \mid 24 \\ 2 \mid 12 \\ 2 \mid 6 \\ 3 \mid 3 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 36 \\ 2 \mid 18 \\ 3 \mid 9 \\ 3 \mid 3 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 48 \\ 2 \mid 24 \\ 2 \mid 12 \\ 3 \mid 6 \\ \hline 1 \end{array} \end{array}$$

Factors of 24 = 2 x 2 x 2 x 3

Factors of 36 = 2 x 2 x 3 x 3

Factors of 48 = 2 x 2 x 2 x 2 x 3

The common factors of 24, 36 and 48 = 2 x 2 x 3 = 12.

Ans: G.C.D of 24, 36 and 48 = 12

4 33, 66, 11

$$\begin{array}{c} \text{Sol:} \quad \begin{array}{c} 3 \mid 33 \\ 11 \mid 11 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 66 \\ 3 \mid 33 \\ \hline 1 \end{array} \quad \begin{array}{c} 11 \mid 11 \\ \hline 1 \end{array} \end{array}$$

Factors of 33 = 3 x 11

Factors of 66 = 2 x 3 x 11

Factors of 11 = 1 x 11

The common factors of 33, 66 and 11 = 11.

Ans: G.C.D of 33, 66 and 11 = 11

5 24, 48, 72

$$\begin{array}{c} \text{Sol:} \quad \begin{array}{c} 2 \mid 24 \\ 2 \mid 12 \\ 2 \mid 6 \\ 3 \mid 3 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 48 \\ 2 \mid 24 \\ 2 \mid 12 \\ 2 \mid 6 \\ \hline 3 \end{array} \quad \begin{array}{c} 2 \mid 72 \\ 2 \mid 36 \\ 2 \mid 18 \\ 3 \mid 9 \\ \hline 3 \end{array} \end{array}$$

6 40, 50, 60

$$\begin{array}{c} \text{Sol:} \quad \begin{array}{c} 2 \mid 40 \\ 2 \mid 20 \\ 2 \mid 10 \\ 5 \mid 5 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 50 \\ 5 \mid 25 \\ 5 \mid 10 \\ 5 \mid 5 \\ \hline 1 \end{array} \quad \begin{array}{c} 2 \mid 60 \\ 2 \mid 30 \\ 3 \mid 15 \\ 5 \mid 5 \\ \hline 1 \end{array} \end{array}$$

Factors of 24 = $2 \times 2 \times 2 \times 3$
 Factors of 48 = $2 \times 2 \times 2 \times 2 \times 3$
 Factors of 72 = $2 \times 2 \times 2 \times 3 \times 3$
 The common factors of 24, 48 and 72 = $2 \times 2 \times 2 \times 3 = 24$.
 Ans: G.C.D of 24, 48 and 72 = 24

7 46, 69, 92

$$\text{Sol: } \begin{array}{|c|c|} \hline 2 & 46 \\ \hline 23 & 23 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 3 & 69 \\ \hline 23 & 23 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 92 \\ \hline 23 & 23 \\ \hline 1 & \end{array}$$

Factors of 46 = 2×23
 Factors of 69 = 3×23
 Factors of 92 = $2 \times 2 \times 23$
 The common factors of 46, 69 and 92 = 23.
 Ans: G.C.D of 46, 69 and 92 = 23

9 16, 20, 24

$$\text{Sol: } \begin{array}{|c|c|} \hline 2 & 16 \\ \hline 2 & 8 \\ \hline 2 & 4 \\ \hline 2 & 2 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 20 \\ \hline 2 & 10 \\ \hline 2 & 5 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 1 & \end{array}$$

Factors of 16 = $2 \times 2 \times 2 \times 2$
 Factors of 20 = $2 \times 2 \times 5$
 Factors of 24 = $2 \times 2 \times 2 \times 3$
 The common factors of 16, 20 and 24 = $2 \times 2 = 4$.
 Ans: G.C.D of 16, 20 and 24 = 4

Factors of 40 = $2 \times 2 \times 2 \times 5$
 Factors of 50 = $2 \times 5 \times 5$
 Factors of 60 = $2 \times 2 \times 3 \times 5$
 The common factors of 40, 50 and 60 = $2 \times 5 = 10$.
 Ans: G.C.D of 40, 50 and 60 = 10

8 45, 95, 90

$$\text{Sol: } \begin{array}{|c|c|} \hline 3 & 45 \\ \hline 3 & 15 \\ \hline 5 & 5 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 5 & 95 \\ \hline 19 & 19 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 90 \\ \hline 3 & 45 \\ \hline 3 & 15 \\ \hline 5 & 5 \\ \hline 1 & \end{array}$$

Factors of 45 = $3 \times 3 \times 5$
 Factors of 95 = 5×19
 Factors of 90 = $2 \times 3 \times 3 \times 5$
 The common factors of 45, 95 and 90 = 5.
 Ans: G.C.D of 45, 95 and 90 = 5

10 63, 21, 42

$$\text{Sol: } \begin{array}{|c|c|} \hline 3 & 63 \\ \hline 3 & 21 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 3 & 21 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 42 \\ \hline 3 & 21 \\ \hline 7 & 7 \\ \hline 1 & \end{array}$$

Factors of 63 = $3 \times 3 \times 7$
 Factors of 21 = 3×7
 Factors of 42 = $2 \times 3 \times 7$
 The common factors of 63, 21 and 42 = $3 \times 7 = 21$.
 Ans: G.C.D of 63, 21 and 42 = 21

11 21, 28, 56

$$\text{Sol: } \begin{array}{|c|c|} \hline 3 & 21 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 28 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 56 \\ \hline 2 & 28 \\ \hline 2 & 14 \\ \hline 7 & 7 \\ \hline 1 & \end{array}$$

Factors of 21 = 3×7
 Factors of 28 = $2 \times 2 \times 7$
 Factors of 56 = $2 \times 2 \times 2 \times 7$
 The common factors of 21, 28 and 56 = 7.
 Ans: G.C.D of 21, 28 and 56 = 7

13 24, 48, 96

$$\text{Sol: } \begin{array}{|c|c|} \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 3 & 3 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 48 \\ \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 96 \\ \hline 2 & 48 \\ \hline 2 & 24 \\ \hline 2 & 12 \\ \hline 2 & 6 \\ \hline 1 & \end{array}$$

Factors of 24 = $2 \times 2 \times 2 \times 3$
 Factors of 48 = $2 \times 2 \times 2 \times 2 \times 3$
 Factors of 96 = $2 \times 2 \times 2 \times 2 \times 2 \times 3$
 The common factors of 24, 48 and 96 = $2 \times 2 \times 2 \times 3 = 24$.
 Ans: G.C.D of 24, 48 and 96 = 24

15 35, 55, 105

$$\text{Sol: } \begin{array}{|c|c|} \hline 3 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 5 & 55 \\ \hline 11 & 11 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 3 & 105 \\ \hline 5 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array}$$

Factors of 35 = 3×7
 Factors of 55 = 5×11
 Factors of 105 = $3 \times 5 \times 7$
 The common factors of 35, 55 and 105 = 1.
 Ans: G.C.D of 35, 55 and 105 = 1

12 20, 40, 100

$$\text{Sol: } \begin{array}{|c|c|} \hline 2 & 20 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 40 \\ \hline 2 & 20 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 100 \\ \hline 2 & 50 \\ \hline 5 & 25 \\ \hline 5 & 5 \\ \hline 1 & \end{array}$$

Factors of 20 = $2 \times 2 \times 5$
 Factors of 40 = $2 \times 2 \times 2 \times 5$
 Factors of 100 = $2 \times 2 \times 5 \times 5$
 The common factors of 20, 40 and 100 = 10.
 Ans: G.C.D of 20, 40 and 100 = 10

14 39, 52, 91

$$\text{Sol: } \begin{array}{|c|c|} \hline 3 & 39 \\ \hline 13 & 13 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 52 \\ \hline 2 & 26 \\ \hline 13 & 13 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 7 & 91 \\ \hline 13 & 13 \\ \hline 1 & \end{array}$$

Factors of 39 = 3×13
 Factors of 52 = $2 \times 2 \times 13$
 Factors of 91 = 7×13
 The common factors of 39, 52 and 91 = 13.
 Ans: G.C.D of 39, 52 and 91 = 13

16 70, 105, 140

$$\text{Sol: } \begin{array}{|c|c|} \hline 2 & 70 \\ \hline 5 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 3 & 105 \\ \hline 5 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{|c|c|} \hline 2 & 140 \\ \hline 2 & 70 \\ \hline 5 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array}$$

Factors of 70 = $2 \times 5 \times 7$
 Factors of 105 = $3 \times 5 \times 7$
 Factors of 140 = $2 \times 2 \times 5 \times 7$
 The common factors of 70, 105 and 140 = $5 \times 7 = 35$.
 Ans: G.C.D of 70, 105 and 140 = 35

G.C.D by Division method

Exercises by division method.

Example: Find G.C.D 57, 114 and 95

$$\begin{array}{r}
 19 \overline{)57} \quad 95 \overline{)114} \\
 \underline{-57} \quad \underline{-95} \\
 0 \quad 2 \\
 \end{array}
 \quad
 \begin{array}{r}
 19 \overline{)95} \quad 95 \overline{)5} \\
 \underline{-95} \quad \underline{-95} \\
 0 \quad 0 \\
 \end{array}$$

$$\begin{array}{r}
 75 \overline{)85} \quad 75 \overline{)75} \\
 \underline{-75} \quad \underline{-75} \\
 0 \quad 0 \\
 \end{array}$$

$$\begin{array}{r}
 10 \overline{)75} \\
 \underline{-70} \\
 5 \\
 \end{array}$$

G.C.D= 19

Example Find G.C.D of 24, 88, 76

$$\begin{array}{r}
 4 \overline{)24} \quad 76 \overline{)88} \\
 \underline{-24} \quad \underline{-76} \\
 0 \quad 6 \\
 \end{array}$$

$$\begin{array}{r}
 12 \overline{)76} \\
 \underline{-72} \\
 4 \\
 \end{array}$$

$$\begin{array}{r}
 4 \overline{)12} \\
 \underline{-12} \\
 0 \\
 \end{array}$$

G.C.D= 4

EXERCISE 2.2

Q.1: Find G.C.D by Division method.

1 40, 45, 55

$$\begin{array}{r}
 40 \overline{)55} \quad 5 \overline{)45} \\
 \underline{-40} \quad \underline{-45} \\
 5 \quad 9 \\
 \underline{-40} \quad \underline{-45} \\
 00 \quad 00 \\
 \end{array}$$

$$\begin{array}{r}
 5 \overline{)55} \\
 \underline{-55} \\
 00 \\
 \end{array}$$

Ans: The G.C.D of 40, 45 and 55 is 5.

2 12, 45, 21

$$\begin{array}{r}
 12 \overline{)45} \\
 \underline{-36} \\
 9 \\
 \end{array}$$

$$\begin{array}{r}
 9 \overline{)12} \\
 \underline{-9} \\
 3 \\
 \end{array}$$

$$\begin{array}{r}
 3 \overline{)45} \\
 \underline{-3} \\
 15 \\
 \end{array}$$

$$\begin{array}{r}
 3 \overline{)15} \\
 \underline{-9} \\
 6 \\
 \end{array}$$

$$\begin{array}{r}
 3 \overline{)6} \\
 \underline{-6} \\
 0 \\
 \end{array}$$

$$\begin{array}{r}
 3 \overline{)21} \\
 \underline{-21} \\
 0 \\
 \end{array}$$

Ans: The G.C.D of 12, 45 and 21 is 3.

3 96, 144

$$\begin{array}{r}
 96 \overline{)144} \\
 \underline{-96} \\
 48 \\
 \underline{-96} \\
 00 \\
 \end{array}$$

$$\begin{array}{r}
 48 \overline{)144} \\
 \underline{-144} \\
 00 \\
 \end{array}$$

Ans: The G.C.D of 96, 144 is 48.

4 39, 65, 26

$$\begin{array}{r}
 26 \overline{)65} \\
 \underline{-52} \\
 13 \\
 \underline{-26} \\
 00 \\
 \end{array}$$

$$\begin{array}{r}
 13 \overline{)26} \\
 \underline{-26} \\
 00 \\
 \end{array}$$

$$\begin{array}{r}
 13 \overline{)65} \\
 \underline{-65} \\
 00 \\
 \end{array}$$

Ans: The G.C.D of 39, 65 and 26 is 13.

5 75, 85, 105

$$\begin{array}{r}
 75 \overline{)85} \\
 \underline{-75} \\
 10 \\
 \end{array}$$

$$\begin{array}{r}
 5 \overline{)85} \\
 \underline{-5} \\
 35 \\
 \end{array}$$

$$\begin{array}{r}
 5 \overline{)75} \\
 \underline{-5} \\
 25 \\
 \end{array}$$

$$\begin{array}{r}
 5 \overline{)25} \\
 \underline{-25} \\
 00 \\
 \end{array}$$

Ans: The G.C.D of 75, 85 and 105 is 5.

6 22, 99, 77

$$\begin{array}{r}
 22 \overline{)99} \\
 \underline{-88} \\
 11 \\
 \end{array}$$

$$\begin{array}{r}
 11 \overline{)22} \\
 \underline{-22} \\
 00 \\
 \end{array}$$

$$\begin{array}{r}
 11 \overline{)77} \\
 \underline{-77} \\
 00 \\
 \end{array}$$

Ans: The G.C.D of 22, 99 and 77 is 11.

7 51, 68, 34

$$\begin{array}{r}
 34 \overline{)51} \\
 \underline{-34} \\
 17 \\
 \end{array}$$

$$\begin{array}{r}
 17 \overline{)68} \\
 \underline{-68} \\
 00 \\
 \end{array}$$

$$\begin{array}{r}
 17 \overline{)34} \\
 \underline{-34} \\
 00 \\
 \end{array}$$

Ans: The G.C.D of 51, 68 and 34 is 17.

8) 12, 48, 78

Sol:

$$\begin{array}{r} 6 \\ 12 \overline{)78} \\ -72 \quad 2 \\ \hline 6 \quad 12 \\ -12 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 2 \\ 6 \overline{)12} \\ -12 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 8 \\ 6 \overline{)48} \\ -48 \quad 00 \\ \hline 00 \end{array}$$

Ans: The G.C.D of 12, 48 and 78 is 6.

9) 28, 72, 96

Sol:

$$\begin{array}{r} 3 \\ 28 \overline{)96} \\ -84 \quad 2 \\ \hline 12 \quad 28 \\ -24 \quad 3 \\ \hline 4 \quad 12 \\ -12 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 7 \\ 4 \overline{)28} \\ -28 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 18 \\ 4 \overline{)72} \\ -4 \quad 32 \\ \hline -32 \quad 00 \\ \hline 00 \end{array}$$

Ans: The G.C.D of 28, 72 and 96 is 4.

10) 16, 64, 92

Sol:

$$\begin{array}{r} 5 \\ 16 \overline{)92} \\ -80 \quad 1 \\ \hline 12 \quad 16 \\ -12 \quad 3 \\ \hline 4 \quad 12 \\ -12 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 16 \\ 4 \overline{)64} \\ -4 \quad 24 \\ \hline -24 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 4 \\ 4 \overline{)16} \\ -16 \quad 00 \\ \hline 00 \end{array}$$

Ans: The G.C.D of 16, 64 and 92 is 4.

11) 88, 24, 76

Sol:

$$\begin{array}{r} 1 \\ 76 \overline{)88} \\ -76 \quad 6 \\ \hline 12 \quad 76 \\ -72 \quad 3 \\ \hline 4 \quad 12 \\ -12 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 6 \\ 4 \overline{)24} \\ -24 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 19 \\ 4 \overline{)76} \\ -6 \quad 36 \\ \hline 36 \quad 00 \\ \hline 00 \end{array}$$

Ans: The G.C.D of 88, 24 and 76 is 4.

12) 121, 11

Sol:

$$\begin{array}{r} 11 \\ 11 \overline{)121} \\ -121 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 1 \\ 11 \overline{)11} \\ -11 \quad 00 \\ \hline 00 \end{array}$$

Ans: The G.C.D of 121 and 11 is 11.

13) 169, 91, 13

Sol:

$$\begin{array}{r} 13 \\ 13 \overline{)169} \\ -13 \quad 39 \\ \hline 39 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 1 \\ 13 \overline{)13} \\ -13 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 7 \\ 13 \overline{)91} \\ -91 \quad 00 \\ \hline 00 \end{array}$$

Ans: The G.C.D of 169, 91 and 13 is 13.

14) 63, 21, 42

Sol:

$$\begin{array}{r} 3 \\ 21 \overline{)63} \\ -63 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 1 \\ 21 \overline{)21} \\ -21 \quad 00 \\ \hline 00 \end{array}$$

$$\begin{array}{r} 2 \\ 21 \overline{)42} \\ -42 \quad 00 \\ \hline 00 \end{array}$$

Ans: The G.C.D of 63, 21 and 42 is 21.

i 10, 15, 25

Sol:

$$10 \overline{)25} \begin{matrix} 2 \\ -20 \\ \hline 5 \\ \hline 10 \\ -10 \\ \hline 00 \end{matrix}$$

$$5 \overline{)15} \begin{matrix} 3 \\ -15 \\ \hline 00 \end{matrix}$$

$$5 \overline{)10} \begin{matrix} 2 \\ -10 \\ \hline 00 \end{matrix}$$

Ans: The G.C.D of 10, 15 and 25 is 5.

ii 144, 96, 48

Sol:

$$48 \overline{)144} \begin{matrix} 3 \\ -144 \\ \hline 000 \end{matrix}$$

$$48 \overline{)48} \begin{matrix} 1 \\ -48 \\ \hline 00 \end{matrix}$$

$$48 \overline{)96} \begin{matrix} 2 \\ -96 \\ \hline 00 \end{matrix}$$

Ans: The G.C.D of 144, 48 and 96 is 48.

Least Common multiple:

Least common multiple means the number that can be divided by given numbers.

L.C.M can be found by two ways.

i By factorization

ii By division method

L.C.M by factorization method:

We have learnt L.C.M in previous classes now we shall learn more.

Example: Find L.C.M by factorization.

i 12, 36, 56 ii 15, 25, 50 iii 15, 18, 36

(i) Solution:

i 12, 36, 56

Factors of 12

$$= 2 \times 2 \times 3$$

$$2 \overline{)56} \begin{matrix} 2 \\ -28 \\ \hline 28 \\ -28 \\ \hline 0 \end{matrix}$$

$$2 \overline{)36} \begin{matrix} 2 \\ -18 \\ \hline 18 \\ -18 \\ \hline 0 \end{matrix}$$

$$2 \overline{)12} \begin{matrix} 2 \\ -6 \\ \hline 6 \\ -6 \\ \hline 0 \end{matrix}$$

Factors of 36

$$= 2 \times 2 \times 3 \times 3$$

$$2 \overline{)14} \begin{matrix} 2 \\ -14 \\ \hline 14 \\ -14 \\ \hline 0 \end{matrix}$$

$$3 \overline{)9} \begin{matrix} 3 \\ -9 \\ \hline 9 \\ -9 \\ \hline 0 \end{matrix}$$

$$3 \overline{)3} \begin{matrix} 1 \\ -3 \\ \hline 3 \\ -3 \\ \hline 1 \end{matrix}$$

Factors of 56

$$= 2 \times 2 \times 2 \times 7$$

$$7 \overline{)7} \begin{matrix} 1 \\ -7 \\ \hline 7 \\ -7 \\ \hline 1 \end{matrix}$$

$$3 \overline{)3} \begin{matrix} 1 \\ -3 \\ \hline 3 \\ -3 \\ \hline 1 \end{matrix}$$

Common factors = 2×2

Separate factors = $3 \times 3 \times 7$

Total factors = $2 \times 2 \times 3 \times 3 \times 2 \times 7$

L.C.M = 504

ii 15, 25, 50

Factors of 15

$$= 3 \times 5$$

$$2 \overline{)50} \begin{matrix} 2 \\ -50 \\ \hline 50 \\ -50 \\ \hline 0 \end{matrix}$$

$$5 \overline{)25} \begin{matrix} 5 \\ -25 \\ \hline 25 \\ -25 \\ \hline 0 \end{matrix}$$

$$3 \overline{)15} \begin{matrix} 5 \\ -15 \\ \hline 15 \\ -15 \\ \hline 0 \end{matrix}$$

Factors of 25

$$= 5 \times 5$$

$$5 \overline{)5} \begin{matrix} 1 \\ -5 \\ \hline 5 \\ -5 \\ \hline 1 \end{matrix}$$

Factors of 50

$$= 2 \times 5 \times 5$$

Common factors = 5

Separate factors = $3 \times 2 \times 5$

Total factors = $5 \times 5 \times 3 \times 2$

L.C.M = 150

iii 15, 18, 36

Factors of 15

$$= 3 \times 5$$

$$2 \overline{)36} \begin{matrix} 2 \\ -36 \\ \hline 36 \\ -36 \\ \hline 0 \end{matrix}$$

$$2 \overline{)18} \begin{matrix} 2 \\ -18 \\ \hline 18 \\ -18 \\ \hline 0 \end{matrix}$$

$$3 \overline{)15} \begin{matrix} 5 \\ -15 \\ \hline 15 \\ -15 \\ \hline 0 \end{matrix}$$

Factors of 18

$$= 2 \times 3 \times 3$$

$$3 \overline{)9} \begin{matrix} 3 \\ -9 \\ \hline 9 \\ -9 \\ \hline 0 \end{matrix}$$

$$3 \overline{)3} \begin{matrix} 1 \\ -3 \\ \hline 3 \\ -3 \\ \hline 1 \end{matrix}$$

Factors of 36

$$= 2 \times 2 \times 3 \times 3$$

$$3 \overline{)3} \begin{matrix} 1 \\ -3 \\ \hline 3 \\ -3 \\ \hline 1 \end{matrix}$$

Common factors = 3

Separate factors = $2 \times 2 \times 2 \times 3 \times 3 \times 5$

Total factors = $2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5$

L.C.M = 1080

EXERCISE 2.3

Q.1: Find the L.C.M by factorization

1 18, 90, 15

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|18 \\ 3|9 \\ 3|3 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|90 \\ 3|45 \\ 3|15 \\ \hline 1 \end{array} \quad \begin{array}{c} 3|15 \\ 5|5 \\ \hline 1 \end{array} \end{array}$$

Factors of 18 = $2 \times 3 \times 3$
 Factors of 90 = $2 \times 3 \times 3 \times 5$
 Factors of 15 = 3×5
 common factors = 3
 Separate factors = $2 \times 2 \times 3 \times 5 \times 5$
 Total factors = $2 \times 2 \times 3 \times 3 \times 5 \times 5$
 L.C.M = 900 Ans:

3 12, 36, 54

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|12 \\ 2|6 \\ 3|3 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|36 \\ 2|18 \\ 3|9 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|54 \\ 3|27 \\ 3|9 \\ \hline 1 \end{array} \end{array}$$

Factors of 12 = $2 \times 2 \times 3$
 Factors of 36 = $2 \times 2 \times 3 \times 3$
 Factors of 54 = $2 \times 3 \times 3 \times 3$
 common factors = 2×3
 Separate factors = $2 \times 2 \times 3 \times 3 \times 3$
 Total factors = $2 \times 2 \times 3 \times 3 \times 3 \times 3$
 L.C.M = 324 Ans:

5 36, 21

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|36 \\ 2|18 \\ 3|9 \\ \hline 1 \end{array} \quad \begin{array}{c} 3|21 \\ 7|7 \\ \hline 1 \end{array} \end{array}$$

2 26, 39, 13

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|26 \\ 13|13 \\ \hline 1 \end{array} \quad \begin{array}{c} 3|39 \\ 13|13 \\ \hline 1 \end{array} \quad \begin{array}{c} 13|13 \\ \hline 1 \end{array} \end{array}$$

Factors of 26 = 2×13
 Factors of 39 = 3×13
 Factors of 13 = 1×13
 common factors = 13
 Separate factors = 2×3
 Total factors = $2 \times 3 \times 13$
 L.C.M = 78 Ans:

4 15, 25, 75

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 3|15 \\ 5|5 \\ \hline 1 \end{array} \quad \begin{array}{c} 5|25 \\ 5|5 \\ \hline 1 \end{array} \quad \begin{array}{c} 3|75 \\ 5|25 \\ \hline 1 \end{array} \end{array}$$

Factors of 15 = 3×5
 Factors of 25 = 5×5
 Factors of 75 = $3 \times 5 \times 5$
 common factors = 5
 Separate factors = $3 \times 3 \times 5 \times 5$
 Total factors = $3 \times 3 \times 5 \times 5 \times 5$
 L.C.M = 1125 Ans:

6 24, 48, 72

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|24 \\ 2|12 \\ 2|6 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|48 \\ 2|24 \\ 2|12 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|72 \\ 2|36 \\ 2|18 \\ \hline 1 \end{array} \end{array}$$

Factors of 21 = 2×7
 Factors of 36 = $2 \times 2 \times 3 \times 3$
 common factors = 3
 Separate factors = $2 \times 2 \times 3 \times 7$
 Total factors = $2 \times 2 \times 3 \times 3 \times 7$
 L.C.M = 252 Ans:

7 20, 25, 35

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|20 \\ 2|10 \\ 5|5 \\ \hline 1 \end{array} \quad \begin{array}{c} 5|25 \\ 5|5 \\ \hline 1 \end{array} \quad \begin{array}{c} 5|35 \\ 7|7 \\ \hline 1 \end{array} \end{array}$$

Factors of 20 = $2 \times 2 \times 5$
 Factors of 25 = 5×5
 Factors of 35 = 5×7
 common factors = 5
 Separate factors = $2 \times 2 \times 5 \times 7$
 Total factors = $2 \times 2 \times 5 \times 5 \times 7$
 L.C.M = 700 Ans:

Factors of 24 = $2 \times 2 \times 2 \times 3$
 Factors of 48 = $2 \times 2 \times 2 \times 2 \times 3$
 Factors of 72 = $2 \times 2 \times 2 \times 3 \times 3$
 common factors = $2 \times 2 \times 2 \times 3$
 Separate factors = 2×3
 Total factors = $2 \times 2 \times 2 \times 2 \times 3 \times 3$
 L.C.M = 144 Ans:

8 44, 36, 22

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|44 \\ 2|22 \\ 11|11 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|36 \\ 2|18 \\ 3|9 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|22 \\ 11|11 \\ \hline 1 \end{array} \end{array}$$

Factors of 44 = $2 \times 2 \times 11$
 Factors of 36 = $2 \times 2 \times 3 \times 3$
 Factors of 22 = 2×11
 common factors = 2
 Separate factors = $2 \times 2 \times 3 \times 3 \times 11 \times 11$
 Total factors = $2 \times 2 \times 2 \times 3 \times 3 \times 11 \times 11$
 L.C.M = 8712 Ans:

9 30, 25, 65

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 2|30 \\ 3|15 \\ 5|5 \\ \hline 1 \end{array} \quad \begin{array}{c} 5|25 \\ 5|5 \\ \hline 1 \end{array} \quad \begin{array}{c} 5|65 \\ 13|13 \\ \hline 1 \end{array} \end{array}$$

Factors of 30 = $2 \times 3 \times 5$
 Factors of 25 = 5×5
 Factors of 65 = 5×13
 common factors = 5
 Separate factors = $2 \times 3 \times 5 \times 13$
 Total factors = $2 \times 3 \times 5 \times 5 \times 13$
 L.C.M = 1950 Ans:

10 21, 24, 18

$$\begin{array}{c} \text{Sol: } \begin{array}{c} 3|21 \\ 7|7 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|24 \\ 2|12 \\ 2|6 \\ \hline 1 \end{array} \quad \begin{array}{c} 2|18 \\ 3|9 \\ 3|3 \\ \hline 1 \end{array} \end{array}$$

Factors of 21 = 3×7
 Factors of 24 = $2 \times 2 \times 2 \times 3$
 Factors of 18 = $2 \times 3 \times 3$
 common factors = 3
 Separate factors = $2 \times 2 \times 2 \times 3 \times 2 \times 7$
 Total factors = $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$
 L.C.M = 1008 Ans:

ii 36, 18, 27

$$\text{Sol: } \begin{array}{c|c} 2 & 36 \\ \hline 2 & 18 \\ 3 & 9 \\ \hline 3 & 9 \\ \hline 3 & 3 \\ \hline 1 & \end{array} \quad \begin{array}{c|c} 2 & 18 \\ \hline 3 & 9 \\ \hline 3 & 9 \\ \hline 1 & \end{array} \quad \begin{array}{c|c} 3 & 27 \\ \hline 3 & 9 \\ \hline 3 & 9 \\ \hline 1 & \end{array}$$

Factors of 36 = $2 \times 2 \times 3 \times 3$
 Factors of 18 = $2 \times 3 \times 3$
 Factors of 27 = $3 \times 3 \times 3$
 common factors = 3×3
 Separate factors = $2 \times 2 \times 2 \times 3$
 Total factors = $2 \times 2 \times 2 \times 3 \times 3 \times 3$
 L.C.M = 216 Ans:

ii 35, 105, 70

$$\text{Sol: } \begin{array}{c|c} 5 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{c|c} 3 & 105 \\ \hline 5 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array} \quad \begin{array}{c|c} 2 & 70 \\ \hline 5 & 35 \\ \hline 7 & 7 \\ \hline 1 & \end{array}$$

Factors of 35 = 5×7
 Factors of 105 = $3 \times 5 \times 7$
 Factors of 70 = $2 \times 5 \times 7$
 common factors = 5×7
 Separate factors = 2×3
 Total factors = $2 \times 3 \times 5 \times 7$
 L.C.M = 210 Ans:

Least common multiple by division method:

In division method all given numbers are divided in group shape is divided by only one number and all divisors are multiplied each other the result is called multiplication of any number is not divided then it is placed in same shape and in next round it is divided by any number.

Important Information

If any number has no divisor then it is placed in same shape.

Example: Find L.C.M by division method.

i 28, 42, 56 ii 54, 60, 72 iii 45, 60, 75

i 28, 42, 56

$$\begin{aligned} \text{L.C.M} &= 2 \times 2 \times 2 \times 3 \times 7 \\ &= 168 \end{aligned}$$

$$\begin{array}{c|c} 2 & 28, 42, 56 \\ \hline 2 & 14, 21, 28 \\ \hline 2 & 7, 21, 14 \\ \hline 3 & 7, 21, 7 \\ \hline 7 & 7, 7, 7 \\ \hline 1 & 1, 1, 1 \end{array}$$

ii 54, 60, 72

$$\begin{aligned} \text{L.C.M} &= 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \\ &= 1080 \end{aligned}$$

2	54, 60, 72
2	27, 30, 36
2	27, 15, 18
3	27, 15, 9
3	9, 5, 3
3	3, 5, 1
5	1, 5, 1
1	1, 1, 1

ii 45, 60, 75

$$\begin{aligned} \text{L.C.M} &= 2 \times 2 \times 3 \times 3 \times 5 \times 5 \\ &= 900 \end{aligned}$$

2	45, 60, 75
2	45, 30, 75
3	45, 15, 75
3	15, 5, 25
5	5, 5, 25
5	1, 1, 5
1	1, 1, 1

EXERCISE 2.4

Q.1: Find L.C.M by Division method.

1 25, 65, 45

$$\text{Sol: } \begin{array}{c|c} 3 & 25, 65, 45 \\ \hline 3 & 25, 65, 15 \\ \hline 5 & 25, 65, 5 \\ \hline 5 & 5, 13, 1 \\ \hline 13 & 1, 13, 1 \\ \hline 1 & 1, 1, 1 \end{array}$$

L.C.M = $3 \times 5 \times 5 \times 13$
 L.C.M = 2925 Ans:

2 18, 27, 36

$$\text{Sol: } \begin{array}{c|c} 2 & 18, 27, 36 \\ \hline 2 & 9, 27, 18 \\ \hline 3 & 9, 27, 9 \\ \hline 3 & 3, 9, 3 \\ \hline 3 & 1, 3, 1 \\ \hline 1 & 1, 1, 1 \end{array}$$

L.C.M = $2 \times 3 \times 3 \times 3 \times 3$
 L.C.M = 108 Ans:

3 36, 48, 60

2	36, 48, 60
2	18, 24, 30
2	9, 12, 15
2	9, 6, 15
3	9, 3, 15
3	3, 1, 5
5	1, 1, 5
1	1, 1, 1

$$\text{L.C.M} = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$$

L.C.M = 720 Ans:

5 10, 20, 30

2	10, 20, 30
2	5, 10, 15
3	5, 5, 15
5	5, 5, 5
1	1, 1, 1

$$\text{L.C.M} = 2 \times 2 \times 3 \times 5$$

L.C.M = 60 Ans:

7 72, 32, 64

2	72, 32, 64
2	36, 16, 32
2	18, 8, 16
2	9, 4, 8
2	9, 2, 4
2	9, 1, 2
3	9, 1, 1
3	3, 1, 1
1	1, 1, 1

$$\text{L.C.M} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$$

L.C.M = 576 Ans:

4 26, 39, 65

2	26, 39, 65
3	13, 39, 65
5	13, 13, 65
13	13, 13, 13
1	1, 1, 1

$$\text{L.C.M} = 2 \times 3 \times 5 \times 13$$

L.C.M = 390 Ans:

6 25, 75, 125

3	25, 75, 125
5	25, 25, 125
5	5, 5, 25
5	1, 1, 5
1	1, 1, 1

$$\text{L.C.M} = 3 \times 5 \times 5 \times 5$$

L.C.M = 375 Ans:

8 45, 75

3	45, 75
3	15, 25
5	5, 25
5	1, 5
1	1, 1

$$\text{L.C.M} = 3 \times 3 \times 5 \times 5$$

L.C.M = 225 Ans:

9 12, 36, 42

2	12, 36, 42
2	6, 18, 21
3	3, 9, 21
3	1, 3, 7
7	1, 1, 7
1	1, 1, 1

$$\text{L.C.M} = 2 \times 2 \times 3 \times 3 \times 7$$

L.C.M = 252 Ans:

10 24, 60, 64

2	24, 60, 64
2	12, 30, 32
2	6, 15, 16
2	3, 15, 8
2	3, 15, 4
2	3, 15, 2
3	1, 15, 1
5	1, 5, 1
1	1, 1, 1

$$\text{L.C.M} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5$$

L.C.M = 960 Ans:

11 18, 36, 108

2	18, 36, 108
2	9, 18, 54
3	9, 9, 27
3	3, 3, 9
3	1, 1, 3
1	1, 1, 1

$$\text{L.C.M} = 2 \times 2 \times 3 \times 3 \times 3$$

L.C.M = 108 Ans:

12 19, 95, 135

3	19, 95, 135
3	19, 95, 45
3	19, 95, 15
5	19, 95, 5
19	19, 19, 1
1	1, 1, 1

$$\text{L.C.M} = 3 \times 3 \times 3 \times 5 \times 19$$

L.C.M = 2565 Ans:

Solution of daily life problem by L.C.M and G.C.D:

EXERCISE 2.5

1 Find the least number of oranges that can be divided in 12 boys 15 girls and 10 children equally.

2	12, 15, 10
2	6, 15, 5
3	3, 15, 5
5	1, 5, 5
1	1, 1, 1

$$\text{L.C.M} = 2 \times 2 \times 3 \times 5$$

L.C.M = 60 Ans:

Ans: The last number of oranges is 60

2	24	2	36	2	48
2	12	2	18	2	24
2	6	3	9	2	12
3	3	3	3	2	6
1	1	1	3	3	1

$$\text{Factors of } 24 = 2 \times 2 \times 2 \times 3$$

$$\text{Factors of } 36 = 2 \times 2 \times 3 \times 3$$

$$\text{Factors of } 48 = 2 \times 2 \times 2 \times 2 \times 3$$

common factors = 24, 36 and 48 is $2 \times 2 \times 3$

Ans: The greatest is 12

3) Find the least number that can be divided by 15, 18, 20 completely.

Sol:
$$\begin{array}{r} 2 | 15, 18, 20 \\ 2 | 15, 9, 10 \\ 3 | 15, 9, 5 \\ 3 | 5, 3, 5 \\ 5 | 5, 1, 5 \\ \hline 1, 1, 1 \end{array}$$

L.C.M = $2 \times 2 \times 3 \times 3 \times 5$

L.C.M = 180 Ans:

5) Nadia thinks a number that is divisible by 24 and 28 completely. Find the number?

Sol:
$$\begin{array}{r} 2 | 24, 28 \\ 2 | 12, 14 \\ 2 | 6, 7 \\ 3 | 3, 7 \\ 7 | 1, 7 \\ \hline 1, 1 \end{array}$$

L.C.M = $2 \times 2 \times 2 \times 3 \times 7$

L.C.M = 168

Ans: The required numbers is 168.

7) Find the least number, that is divisible by 22, 33 and 44 but has no remainder.

Sol:
$$\begin{array}{r} 2 | 22, 33, 44 \\ 2 | 11, 33, 22 \\ 3 | 11, 33, 11 \\ 11 | 11, 11, 11 \\ \hline 1, 1, 1 \end{array}$$

L.C.M = $2 \times 2 \times 3 \times 11$

L.C.M = 132

4) Find the greatest number whose remainder is zero, if it is divided by 27, 18, 36

Sol:
$$\begin{array}{r} 3 | 27 & 2 | 18 & 2 | 36 \\ 3 | 9 & 3 | 9 & 2 | 18 \\ 3 | 3 & 3 | 3 & 3 | 9 \\ \hline 1 & 1 & 3 | 3 \\ & & \hline & & 1 \end{array}$$

Factors of 27 = $3 \times 3 \times 3$

Factors of 18 = $2 \times 3 \times 3$

Factors of 36 = $2 \times 2 \times 3 \times 3$

common factors = 27, 18 and 36 is $3 \times 3 = 9$

Ans: The greatest number is 9

6) How many toffees can be divided in 10, 20 and 40 boys.

Sol:
$$\begin{array}{r} 2 | 10, 20, 40 \\ 2 | 5, 10, 20 \\ 2 | 5, 5, 10 \\ 5 | 5, 5, 5 \\ \hline 1, 1, 1 \end{array}$$

L.C.M = $2 \times 2 \times 2 \times 5$

L.C.M = 40

8) The height of three trees is 32, 48 and 50 metres respectively. Find the scale by which all trees can be measured correctly.

Sol:
$$\begin{array}{r} 2 | 32, 48, 50 \\ 2 | 16, 24, 25 \\ 2 | 8, 12, 25 \\ 2 | 4, 6, 25 \\ 2 | 2, 3, 25 \\ 3 | 1, 3, 25 \\ 5 | 1, 1, 25 \\ 5 | 1, 1, 5 \\ \hline 1, 1, 1 \end{array}$$

L.C.M = $2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 5$

L.C.M = 2400

1 m = 1000cm

$2400 \div 1000 = 2.4$ Ans:

9) Cut the 32m and 56m long rope into equal parts and find the length of longest piece.

Sol:
$$\begin{array}{r} 2 | 32 & 2 | 56 \\ 2 | 16 & 2 | 28 \\ 2 | 8 & 2 | 14 \\ 2 | 4 & 2 | 7 \\ 2 | 2 & \hline 1 \end{array}$$

Factors of 32 = $2 \times 2 \times 2 \times 2 \times 2$

Factors of 56 = $2 \times 2 \times 2 \times 7$

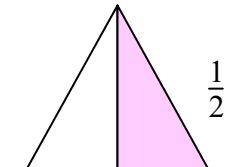
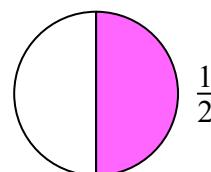
common factors = $2 \times 2 \times 2$

common factors = 8

Ans: The length of longest piece of rope is 8m.

10) Find the least number of mangoes if they can be divided into 10, 36 and 54 boys equal.

Sol:
$$\begin{array}{r} 2 | 10, 36, 54 \\ 2 | 5, 18, 27 \\ 3 | 5, 9, 27 \\ 3 | 5, 3, 9 \\ 3 | 5, 1, 3 \\ 5 | 5, 1, 1 \\ \hline 1, 1, 1 \end{array}$$



L.C.M = $2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5$

L.C.M = 540

Ans: there 540 mangoes.

FRACTION: COMMON FRACTION:

If any thing is divided in equal parts then any part is called common fraction. If a thing is divided into two parts that every part is its fraction and can be shown as $(\frac{1}{2})$ part.

Addition of fraction:

We have learnt the addition of fraction on the base of same and different denominator. Now we shall practice it.

Important Information

When we add different fraction that in the first we find L.C.M of their denominators then we make same fraction.

$$\frac{3}{20} \text{ and } \frac{8}{25}$$

$$\frac{3}{20} + \frac{8}{25}$$

$$\begin{aligned} \text{L.C.M} &= 5 \times 2 \times 2 \times 5 = 100 \\ &= \frac{(3 \times 5) + (8 \times 4)}{100} \\ &= \frac{15 + 32}{100} = \frac{47}{100} \end{aligned}$$

5	20, 25
2	4, 5
2	2, 5
5	1, 5
	1, 1

$$\text{Example } \frac{5}{18} + \frac{5}{12}$$

$$\text{Solve } \frac{5}{18} + \frac{5}{12}$$

$$\begin{aligned} \text{L.C.M} &= 2 \times 2 \times 3 \times 3 = 36 \\ &= \frac{5 \times 3}{12 \times 3} + \frac{5 \times 2}{18 \times 2} \\ &= \frac{15 + 10}{36} \\ &= \frac{25}{36} \end{aligned}$$

2	18, 12
2	9, 6
3	9, 3
3	3, 1
	1, 1

EXERCISE 3.1

Q.1: Solve:

$$1 \quad \frac{15}{3} + \frac{9}{7}$$

R.W

3	3, 7
7	1, 7
	1, 1

Sol: Method-1:

$$\frac{15}{3} + \frac{9}{7}$$

$$\text{L.C.M} = 3 \times 7 = 21$$

$$= \frac{(15 \times 7) + (9 \times 3)}{21}$$

$$= \frac{105 + 27}{21}$$

$$= \frac{44}{21} \quad \frac{132}{21}$$

$$= \frac{44}{7}$$

$$= 6 \frac{2}{7} \quad \text{Ans:}$$

$$7 \overline{)44} \quad \begin{array}{r} 6 \\ -42 \\ \hline 02 \end{array}$$

Method.2

$$\frac{15}{3} + \frac{9}{7}$$

$$\text{Sol: } \frac{15}{3} + \frac{9}{7}$$

$$= \frac{15 \times 7}{3 \times 7} + \frac{9 \times 3}{7 \times 3}$$

$$= \frac{105}{21} + \frac{27}{21}$$

$$= \frac{105 + 27}{21}$$

$$= \frac{132}{21}$$

$$= \frac{44}{7}$$

$$= 6 \frac{2}{7} \quad \text{Ans:}$$

2) $\frac{3}{9} + \frac{7}{27}$

Sol: Method-1:

$$\frac{3}{9} + \frac{7}{27}$$

$$\text{L.C.M} = 3 \times 3 \times 3 = 27$$

$$= \frac{(3 \times 3) + (7 \times 1)}{27}$$

$$= \frac{9 + 7}{27}$$

$$= \frac{16}{27} \quad \text{Ans:}$$

R.W

3	9, 27
3	3, 9
3	1, 3
	1, 1

Method.2

$$\frac{3}{9} + \frac{7}{27}$$

$$= \frac{3 \times 27}{9 \times 27} + \frac{7 \times 9}{27 \times 9}$$

$$= \frac{81}{243} + \frac{63}{243}$$

$$= \frac{48}{243}$$

$$= \frac{16}{81}$$

$$= \frac{16}{27} \quad \text{Ans:}$$

3) $\frac{1}{6} + \frac{4}{12} + \frac{1}{3}$

Sol: $\frac{1}{6} + \frac{4}{12} + \frac{1}{3}$

$$\text{L.C.M} = 2 \times 2 \times 3 = 12$$

$$= \frac{(1 \times 2) + (4 \times 1) + (1 \times 4)}{12}$$

$$= \frac{2 + 4 + 4}{12}$$

$$= \frac{10}{12}$$

$$= \frac{5}{6} \quad \text{Ans:}$$

4) $\frac{1}{4} + \frac{2}{3} + \frac{6}{8}$

Sol: $\text{L.C.M} = 2 \times 2 \times 2 \times 3 = 24$

$$= \frac{(1 \times 6) + (2 \times 8) + (6 \times 3)}{24}$$

$$= \frac{6 + 16 + 18}{24}$$

$$= \frac{40}{24}$$

$$= \frac{20}{12}$$

$$= \frac{10}{6}$$

$$= \frac{5}{3} \quad \text{Ans:}$$

R.W

2	6, 12, 3
2	3, 6, 3
3	3, 3, 3
1	1, 1, 1

R.W

2	4, 3, 8
2	3, 4
2	1, 3, 2
3	1, 3, 1
1	1, 1, 1

5 $2\frac{4}{9} + 5\frac{7}{9}$

Sol: $2\frac{4}{9} + 5\frac{7}{9}$

$$= \frac{22}{9} + \frac{52}{9}$$

$$= \frac{74}{9}$$

$$= \text{OR} \quad 8.22 \quad \text{Ans:}$$

R.W

$$9 \overline{)74} \\ -72 \\ \hline 20 \\ -18 \\ \hline 20 \\ -18 \\ \hline 02$$

6 $\frac{1}{3} + \frac{15}{12}$

Sol: $\frac{1}{3} + \frac{15}{12}$

L.C.M

$$\text{L.C.M} = 2 \times 2 \times 3 = 12$$

$$= \frac{(1 \times 4) + (15 \times 1)}{12}$$

$$= \frac{4 + 15}{12}$$

$$= \frac{19}{12}$$

$$= \text{OR} \quad 1.583 \quad \text{Ans:}$$

$$2 \overline{)3, 12} \\ 2 \overline{)3, 6} \\ 3 \overline{)1, 3} \\ \hline 1, 1$$

$$12 \overline{)19} \\ -12 \\ \hline 70$$

$$\begin{array}{r} -60 \\ \hline 100 \\ -96 \\ \hline 40 \\ -36 \\ \hline 04 \end{array}$$

7 $\frac{5}{6} + \frac{7}{9}$

Sol: $\frac{5}{6} + \frac{7}{9}$

$$\text{L.C.M} = 2 \times 3 \times 3 = 18$$

$$= \frac{(5 \times 3) + (7 \times 2)}{18}$$

$$= \frac{15 + 14}{18}$$

$$= \frac{29}{18}$$

$$= \text{OR} \quad 1.611 \quad \text{Ans:}$$

R.W

$$2 \overline{)6, 9} \\ 3 \overline{)3, 9} \\ 3 \overline{)1, 3} \\ \hline 1, 1$$

$$18 \overline{)29} \\ -18 \\ \hline 100 \\ -108 \\ \hline 20 \\ -18 \\ \hline 20 \\ -18 \\ \hline 02$$

8 $2\frac{3}{4} + 3\frac{4}{5} + 4\frac{7}{8}$

Sol: $2\frac{3}{4} + 3\frac{4}{5} + 4\frac{7}{8}$

$$\frac{11}{4} + \frac{19}{5} + \frac{39}{8}$$

$$= \text{L.C.M} = \frac{(11 \times 10) + (19 \times 8) + (39 \times 5)}{40}$$

$$= \frac{110 + 152 + 195}{40}$$

$$= \frac{457}{40}$$

$$= \text{OR} \quad 11.425 \quad \text{Ans:}$$

R.W

$$2 \overline{)4, 8} \\ 2 \overline{)2, 4} \\ 2 \overline{)1, 2} \\ 5 \overline{)1, 1} \\ \hline 1, 1, 1$$

$$40 \overline{)457} \\ -40 \\ \hline 57 \\ -40 \\ \hline 170 \\ -160 \\ \hline 100 \\ -80 \\ \hline 200 \\ -200 \\ \hline 000$$

9) $4\frac{2}{4} + 15\frac{1}{3}$

Sol: $4\frac{2}{4} + 15\frac{1}{3}$
 $= \frac{18}{4} + \frac{46}{3}$

L.C.M = $2 \times 2 \times 3 = 12$

$= \frac{(18 \times 3) + (46 \times 4)}{12}$

R.W

$$\begin{array}{|r|l|} \hline 2 & 4, 3 \\ \hline 2 & 2, 3 \\ \hline 3 & 1, 3 \\ \hline & 1, 1 \\ \hline \end{array}$$

$$\begin{array}{r} 18 \\ \times 3 \\ \hline 54 \end{array}$$

$$\begin{array}{r} 46 \\ \times 4 \\ \hline 184 \end{array}$$

$$\begin{array}{r} 19.833 \\ 18 \overline{)119} \\ \underline{-6} \\ 59 \\ \underline{-54} \\ 50 \\ \underline{-48} \\ 20 \\ \underline{-18} \\ 20 \\ \underline{-18} \\ 02 \end{array}$$

Ans:

10) $\frac{9}{13} + \frac{5}{26}$

Sol: $\frac{9}{13} + \frac{5}{26}$

$= \frac{(9 \times 2) + (5 \times 1)}{26}$

$= \frac{18 + 5}{26}$

$= \frac{23}{26}$ Ans:

R.W

$$\begin{array}{|r|l|} \hline 2 & 13, 26 \\ \hline 13 & 13, 13 \\ \hline & 1, 1 \\ \hline \end{array}$$

11) $15\frac{2}{3} + 12\frac{4}{5}$

Sol: $15\frac{2}{3} + 12\frac{4}{5}$

$$\begin{array}{r} 47 \\ \times 5 \\ \hline 235 \end{array}$$

= L.C.M = $3 \times 5 = 15$

$= \frac{(47 \times 5) + (64 \times 3)}{15}$

$= \frac{235 + 192}{15}$

$= \frac{427}{15}$

= OR 28.46

Ans:

R.W

$$\begin{array}{|r|l|} \hline 3 & 3, 53 \\ \hline 5 & 1, 5 \\ \hline & 1, 1 \\ \hline \end{array}$$

$$\begin{array}{r} 64 \\ \times 3 \\ \hline 192 \\ \underline{\times 192} \\ 235 \end{array}$$

$$\begin{array}{r} 28.46 \\ 15 \overline{)427} \\ \underline{-30} \\ 127 \\ \underline{-120} \\ 70 \\ \underline{-60} \\ 100 \\ \underline{-90} \\ 10 \end{array}$$

R.W

$$\begin{array}{|r|l|} \hline 2 & 8, 11 \\ \hline 2 & 4, 11 \\ \hline 2 & 2, 11 \\ \hline 11 & 1, 11 \\ \hline & 1, 1 \\ \hline \end{array}$$

12) $\frac{7}{8} + \frac{5}{11}$

Sol: $\frac{7}{8} + \frac{5}{11}$

L.C.M = $2 \times 2 \times 2 \times 11 = 88$

$= \frac{(7 \times 11) + (5 \times 8)}{88}$

$= \frac{77 + 40}{88}$

$= \frac{117}{88}$

= OR 1.329 Ans:

$$\begin{array}{r} 1.329 \\ 18 \overline{)117} \\ \underline{-88} \\ 290 \\ \underline{-264} \\ 260 \\ \underline{-176} \\ 840 \\ \underline{-792} \\ 48 \end{array}$$

Subtraction of Fraction

Example: $4\frac{7}{8} - 3\frac{4}{5}$

Solution $4\frac{7}{8} - 3\frac{4}{5}$

$$= \frac{39}{8} - \frac{19}{5}$$

$$= \frac{39 \times 5}{5 \times 8} - \frac{19 \times 8}{8 \times 5}$$

$$= \frac{195}{40} - \frac{152}{40}$$

$$= \frac{195 - 152}{40} = \frac{43}{40} = 1\frac{3}{40}$$

Example: $\frac{5}{7} - \frac{2}{3}$

Solution $\frac{5}{7} - \frac{2}{3}$

$$= \frac{15 - 14}{21}$$

$$= \frac{1}{21}$$

EXERCISE 3.2

Q.1: Solve:

1 $9\frac{3}{7} - 3\frac{4}{5}$

Sol: $9\frac{3}{7} - 3\frac{4}{5}$

$$= \frac{66}{7} - \frac{19}{5}$$

L.C.M = $5 \times 7 = 35$

$$= \frac{(66 \times 5) - (19 \times 7)}{35}$$

$$= \frac{330 - 133}{35}$$

$$= \frac{197}{35}$$

$$= 5 \frac{22}{35} \text{ Ans:}$$

R.W

$$\begin{array}{r} 5 | 7, 5 \\ 7 | 1, 7 \\ \hline 1, 1 \end{array}$$

$$\begin{array}{r} 66 \\ \times 5 \\ \hline 330 \end{array}$$

$$\begin{array}{r} 19 \\ \times 7 \\ \hline 133 \end{array}$$

$$\begin{array}{r} 330 \\ \times 133 \\ \hline 197 \end{array}$$

$$\begin{array}{r} 5 \\ 35 | 197 \\ \hline -175 \\ \hline 22 \end{array}$$

2 $\frac{7}{4} - \frac{4}{5}$

Sol: $\frac{7}{4} - \frac{4}{5}$

L.C.M = $2 \times 2 \times 5 = 20$

$$= \frac{(7 \times 5) - (4 \times 4)}{20}$$

$$= \frac{35 - 16}{20}$$

$$= \frac{19}{20} \text{ Ans:}$$

R.W

$$\begin{array}{r} 2 | 4, 5 \\ 2 | 2, 5 \\ \hline 5 | 1, 5 \\ \hline 1, 1 \end{array}$$

3 $7\frac{7}{8} - 3\frac{5}{8}$

Sol: $7\frac{7}{8} - 3\frac{5}{8}$

$$= \frac{63}{8} - \frac{29}{8}$$

L.C.M = 8

$$= \frac{63 - 29}{8}$$

$$= \frac{34}{8}$$

4 $\frac{7}{8} - \frac{5}{8}$

Sol: $\frac{7}{8} - \frac{5}{8}$

L.C.M = 8

$$= \frac{56 - 40}{8}$$

$$= \frac{16}{8}$$

$$= 2 \text{ Ans:}$$

5) $\frac{17}{8} - \frac{11}{6}$

Sol: $\frac{17}{8} - \frac{11}{6}$

L.C.M $= 2 \times 2 \times 2 \times 3 = 24$

$= \frac{(17 \times 3) - (11 \times 4)}{24}$

$= \frac{51 - 44}{24}$

$= \frac{7}{24}$ Ans:

R.W

2	8	, 6
2	4	, 3
2	2	, 3
3	1	, 3
	1	, 1

6) $5\frac{3}{7} - 2\frac{5}{6}$

Sol: $5\frac{3}{7} - 2\frac{5}{6}$

$= \frac{38}{7} - \frac{17}{6}$

L.C.M $= 2 \times 3 \times 7 = 42$

$= \frac{(38 \times 6) - (17 \times 7)}{42}$

$= \frac{228 - 119}{42}$

$= \frac{109}{42}$

$= 2 \frac{25}{42}$ Ans:

R.W

2	7	, 6
3	7	, 3
7	7	, 3
	1	, 1

$$\begin{array}{r} 38 \\ \times 6 \\ \hline 228 \end{array}$$

$$\begin{array}{r} 17 \\ \times 7 \\ \hline 119 \end{array}$$

$$\begin{array}{r} 228 \\ - 119 \\ \hline 109 \end{array}$$

$$\begin{array}{r} 2 \\ 42 \overline{)109} \\ \quad - 86 \\ \hline \quad 25 \end{array}$$

7) $\frac{2}{3} - \frac{5}{9}$

Sol: $\frac{2}{3} - \frac{5}{9}$

L.C.M $= 3 \times 3 = 9$

$= \frac{(2 \times 3) - (5 \times 1)}{9}$

$= \frac{6 - 5}{9}$

$= \frac{1}{9}$ Ans:

3	3	, 9
3	1	, 3
1		, 1

8) $\frac{30}{7} - \frac{12}{5}$

Sol: $\frac{30}{7} - \frac{12}{5}$

L.C.M $= 5 \times 7 = 35$

$= \frac{(30 \times 5) - (12 \times 7)}{35}$

$= \frac{150 - 84}{35} = \frac{66}{35}$

$= 1 \frac{31}{35}$ Ans:

5	7	, 5
7	7	, 1
1		, 1

$$\begin{array}{r} 1 \\ 35 \overline{)66} \\ \quad - 35 \\ \hline \quad 31 \end{array}$$

9) $\frac{3}{5} - \frac{1}{6}$

Sol: $\frac{3}{5} - \frac{1}{6}$

L.C.M $= 2 \times 3 \times 5 = 30$

$= \frac{(3 \times 6) - (1 \times 5)}{30}$

$= \frac{18 - 5}{30}$

$= \frac{13}{30}$ Ans:

2	5	, 6
3	5	, 3
5	5	, 1
1		, 1

10 $7\frac{7}{8} - 2\frac{2}{3}$

Sol: $= 7\frac{7}{8} - 2\frac{2}{3}$

$= \frac{63}{8} - \frac{8}{3}$

L.C.M $= 2 \times 2 \times 2 \times 3 = 24$

$= \frac{(63 \times 3) - (8 \times 8)}{24}$

$= \frac{189 - 64}{24}$

$= \frac{125}{24}$

$= 5 \frac{5}{24}$ Ans:

R.W

$$\begin{array}{r} 2 | 8, 3 \\ 2 | 4, 3 \\ 2 | 2, 3 \\ 3 | 1, 3 \\ \hline 1, 1 \end{array}$$

$$\begin{array}{r} 63 \\ \times 3 \\ \hline 189 \end{array}$$

$$\begin{array}{r} 5 \\ 24 \overline{)125} \\ \underline{-120} \\ 5 \end{array}$$

11 $\frac{13}{7} - \frac{4}{3}$

Sol: $\frac{13}{7} - \frac{4}{3}$

L.C.M $= 3 \times 7 = 21$

$= \frac{(13 \times 3) - (4 \times 7)}{21}$

$= \frac{39 - 28}{21}$

$= \frac{11}{21}$ Ans:

R.W

$$\begin{array}{r} 3 | 7, 3 \\ 7 | 7, 1 \\ \hline 1, 1 \end{array}$$

12 $\frac{28}{30} - \frac{5}{6}$

Sol: $= \frac{28}{30} - \frac{5}{6}$

L.C.M $= 2 \times 3 \times 5 = 30$

$= \frac{(28 \times 1) - (5 \times 5)}{30}$

$= \frac{28 - 25}{30}$

$= \frac{3}{30}$

$= \frac{1}{10}$ Ans:

R.W

$$\begin{array}{r} 2 | 30, 6 \\ 3 | 15, 3 \\ 5 | 5, 1 \\ \hline 1, 1 \end{array}$$

Multiplication of fraction:

In the multiplication of fraction, numerator is multiplied with numerator and denominator is multiplied with denominator.

$$\frac{21}{40} \times \frac{64}{63}$$

$$\frac{21}{40} \times \frac{64}{63}$$

$$= \frac{1 \cancel{21}}{5 \cancel{40}} \times \frac{64 \cancel{63}}{63 \cancel{3}}$$

$$= \frac{1 \times 8}{5 \times 3} = \frac{8}{15}$$

Example $\frac{3}{7} \times \frac{9}{21}$

Solve $\frac{3}{7} \times \frac{9}{21}$

$$= \frac{1 \cancel{3}}{7} \times \frac{9}{21}$$

$$= \frac{9}{7 \times 7} = \frac{9}{49}$$

Example $13 \times 2\frac{6}{7}$

Solve $13 \times 2\frac{6}{7}$

$$= 13 \times \frac{20}{7}$$

$$= \frac{13 \times 20}{7} = \frac{360}{7}$$

$$= 37\frac{1}{7} = \frac{260}{7}$$

EXERCISE 3.3

Q.1: Solve:

1) $\frac{8}{6} \times \frac{9}{5}$

Sol: $\frac{8}{6} \times \frac{9}{5}$
 $= \frac{8}{2} \times \frac{3}{5}$
 $= \frac{24}{10}$
 $= \frac{12}{5}$
 $= 2 \frac{2}{5}$ Ans:

3) $\frac{4}{7} \times \frac{5}{8}$

Sol: $\frac{4}{7} \times \frac{5}{8}$
 $= \frac{1}{7} \times \frac{5}{2}$
 $= \frac{5}{14}$ Ans:

5) $\frac{21}{49} \times \frac{66}{56} \times \frac{2}{15}$

Sol: $\frac{21}{49} \times \frac{66}{56} \times \frac{2}{15}$
 $= \frac{3}{49} \times \frac{22}{8} \times \frac{2}{5}$
 $= \frac{3}{49} \times \frac{22}{4} \times \frac{1}{5}$
 $= \frac{33}{980}$
 $= \frac{33}{490}$ Ans:

2) $\frac{27}{10} \times \frac{30}{18} \times \frac{3}{5}$

Sol: $\frac{27}{10} \times \frac{30}{18} \times \frac{3}{5}$
 $= \frac{9}{1} \times \frac{3}{6} \times \frac{3}{5}$
 $= \frac{3}{1} \times \frac{3}{2} \times \frac{3}{5}$
 $= \frac{27}{10}$
 $= 2 \frac{7}{10}$ Ans:

4) $\frac{12}{8} \times \frac{12}{22}$

Sol: $\frac{12}{8} \times \frac{12}{22}$
 $= \frac{6}{2} \times \frac{3}{11}$
 $= \frac{18}{22}$
 $= \frac{9}{11}$ Ans:

6) $\frac{6}{7} \times \frac{7}{8}$

Sol: $\frac{6}{7} \times \frac{7}{8}$
 $= \frac{3}{4}$ Ans:

7) $\frac{66}{12} \times \frac{95}{22} \times \frac{48}{56}$

Sol: $\frac{66}{12} \times \frac{95}{22} \times \frac{48}{56}$
 $= \frac{3}{12} \times \frac{95}{1} \times \frac{48}{56}$
 $= \frac{3}{1} \times \frac{95}{1} \times \frac{4}{56}$
 $= \frac{1140}{56}$
 $= \frac{285}{14}$
 $= \frac{285}{14}$
 $= 20 \frac{5}{14}$ Ans:

9) $\frac{16}{21} \times \frac{3}{4}$

Sol: $\frac{16}{21} \times \frac{3}{4}$
 $= \frac{4}{7} \times \frac{1}{1}$
 $= \frac{4}{7}$ Ans:

R.W

$$\begin{array}{r} 20 \\ 14 \sqrt{285} \\ \underline{-280} \\ 5 \end{array}$$

8) $\frac{5}{9} \times \frac{14}{15} \times \frac{3}{7}$

Sol: $\frac{5}{9} \times \frac{14}{15} \times \frac{3}{7}$
 $= \frac{1}{9} \times \frac{2}{3} \times \frac{1}{1}$
 $= \frac{1}{3} \times \frac{2}{3} \times \frac{1}{1}$
 $= \frac{2}{9}$ Ans:

10) $\frac{3}{4} \times \frac{5}{21}$

Sol: $\frac{3}{4} \times \frac{5}{21}$
 $= \frac{5}{28}$ Ans:

(11) $2\frac{2}{9} \times 2\frac{2}{5} \times 2\frac{3}{5}$

Sol:
$$\begin{aligned} & 2\frac{2}{9} \times 2\frac{2}{5} \times 2\frac{3}{5} \\ &= \frac{4}{9} \times \frac{12}{5} \times \frac{13}{5} \\ &= \frac{4}{3} \times \frac{4}{1} \times \frac{13}{5} \\ &= \frac{16}{3} \times \frac{13}{5} \\ &= \frac{208}{15} \\ &= 13\frac{13}{15} \text{ Ans:} \end{aligned}$$

R.W

$$15 \overline{)208 \atop -15 \atop \frac{58}{13}}$$

(12) $1\frac{2}{3} \times 3\frac{1}{2} \times 2\frac{5}{7}$

Sol:
$$\begin{aligned} & 1\frac{2}{3} \times 3\frac{1}{2} \times 2\frac{5}{7} \\ &= \frac{5}{3} \times \frac{7}{2} \times \frac{19}{7} \\ &= \frac{5}{3} \times \frac{1}{2} \times \frac{19}{1} \\ &= \frac{5}{6} \times \frac{19}{1} \\ &= \frac{95}{6} \\ &= 15\frac{5}{6} \text{ Ans:} \end{aligned}$$

R.W

$$6 \overline{)95 \atop -6 \atop \frac{35}{-30 \atop 5}}$$

To prove the division Law

There are two laws of division of multiplication.

- i) Addition over Division of multiplication.
- ii) Subtraction over Division of multiplication

Prove that $\frac{1}{3} \times \left[\frac{2}{4} + \frac{1}{2} \right] = \left[\frac{1}{3} \times \frac{2}{4} \right] + \left[\frac{1}{3} \times \frac{1}{2} \right]$

$$\frac{1}{3} \times \left[\frac{2+2}{4} \right] = \frac{2}{12} + \frac{1}{6}$$

$$\frac{1}{3} \times \frac{4}{4} = \frac{2}{12} + \frac{1}{6}$$

$$\frac{4}{12} = \frac{2+2}{12}$$

$$\frac{1}{3} \frac{4}{12} = \frac{4}{12} \frac{1}{3}$$

$$\frac{1}{3} = \frac{1}{3}$$

L.H.S = R.H.S

Prove that $\frac{1}{4} \times \left[\frac{3}{4} - \frac{2}{3} \right] = \left[\frac{1}{4} \times \frac{3}{4} \right] - \left[\frac{1}{4} \times \frac{2}{3} \right]$

$$\frac{1}{4} \times \left[\frac{9-8}{12} \right] = \frac{3}{16} - \frac{2}{12}$$

$$\frac{1}{4} \times \frac{1}{12} = \frac{3}{16} - \frac{2}{12}$$

$$\frac{1}{48} = \frac{9-8}{48}$$

$$\frac{1}{48} = \frac{1}{48}$$

L.H.S = R.H.S

EXERCISE 3.4

Q.1: Prove that:

$$1 \quad \frac{2}{3} \times \left[\frac{1}{5} + \frac{3}{5} \right] = \left[\frac{2}{3} \times \frac{1}{5} \right] + \left[\frac{2}{3} \times \frac{3}{5} \right]$$

Sol: L.H.S = R.H.S

$$\frac{2}{3} \times \left[\frac{1}{5} + \frac{3}{5} \right] = \left[\frac{2}{3} \times \frac{1}{5} \right] + \left[\frac{2}{3} \times \frac{3}{5} \right]$$

$$\frac{2}{3} \times \left[\frac{1+3}{5} \right] = \frac{2}{15} + \frac{6}{15}$$

$$\frac{2}{3} \times \frac{4}{5} = \frac{2+6}{15}$$

$$\frac{8}{15} = \frac{8}{15}$$

Hence proved LHS = RHS

$$2 \quad \frac{4}{9} \times \left[\frac{1}{3} - \frac{1}{4} \right] = \left[\frac{4}{9} \times \frac{1}{3} \right] - \left[\frac{4}{9} \times \frac{1}{4} \right]$$

Sol: L.H.S = R.H.S

$$\frac{4}{9} \times \left[\frac{1}{3} - \frac{1}{4} \right] = \left[\frac{4}{9} \times \frac{1}{3} \right] - \left[\frac{4}{9} \times \frac{1}{4} \right]$$

$$\frac{4}{9} \times \left[\frac{(1 \times 4) - (1 \times 3)}{12} \right] = \frac{4}{27} - \frac{4}{36}$$

$$\frac{4}{9} \times \frac{4-3}{12} = \frac{(4 \times 4) - (4 \times 3)}{108}$$

$$\frac{4}{9} \times \frac{1}{12} = \frac{16 - 12}{108}$$

$$\frac{4}{108} = \frac{4}{108}$$

$$\frac{2}{54} = \frac{2}{54}$$

$$\frac{1}{27} = \frac{1}{27}$$

Hence proved LHS = RHS

$$\begin{array}{c} \text{R.W} \\ \begin{array}{c} 2 | 27, 36 \\ 2 | 27, 18 \\ 3 | 27, 9 \\ 3 | 9, 3 \\ 3 | 3, 1 \\ 1, 1 \end{array} \end{array}$$

$$2 \times 2 \times 3 \times 3 \times 3 = 108$$

$$3 \quad \frac{16}{3} \times \left[\frac{9}{2} - \frac{8}{9} \right] = \left[\frac{16}{3} \times \frac{9}{2} \right] - \left[\frac{16}{3} \times \frac{8}{9} \right]$$

Sol: L.H.S = R.H.S

$$\frac{16}{3} \times \left[\frac{9}{2} - \frac{8}{9} \right] = \left[\frac{16}{3} \times \frac{9}{2} \right] - \left[\frac{16}{3} \times \frac{8}{9} \right]$$

$$\frac{16}{3} \times \left[\frac{(9 \times 9) - (8 \times 2)}{18} \right] = \frac{144}{6} - \frac{126}{27} \quad \text{R.W}$$

$$\frac{16}{3} \times \left[\frac{81 - 16}{18} \right] = \frac{(144 \times 9) - (126 \times 2)}{54} \quad \begin{array}{c} 2 | 6, 27 \\ 3 | 3, 27 \\ 3 | 1, 9 \\ 3 | 1, 3 \\ 1, 1 \end{array}$$

$$\frac{16}{3} \times \frac{65}{18} = \frac{1296 - 252}{54} \quad \begin{array}{c} 2 | 6, 27 \\ 3 | 3, 27 \\ 3 | 1, 9 \\ 3 | 1, 3 \\ 1, 1 \end{array}$$

$$= \frac{1040}{54} = \frac{1040}{54} \quad 2 \times 3 \times 3 \times 3 = 54$$

$$= \frac{520}{27} = \frac{520}{27} \quad 27 \overline{)520} \begin{array}{c} 19 \\ -27 \\ \hline 250 \end{array}$$

$$= 19 \frac{7}{27} = 19 \frac{7}{27} \quad \begin{array}{c} 19 \\ -243 \\ \hline 7 \end{array}$$

Hence proved LHS = RHS

$$4 \quad \frac{2}{3} \times \left[\frac{1}{2} + \frac{2}{7} \right] = \left[\frac{2}{3} \times \frac{1}{2} \right] + \left[\frac{2}{3} \times \frac{2}{7} \right]$$

Sol: L.H.S = R.H.S

$$\frac{2}{3} \times \left[\frac{1}{2} + \frac{2}{7} \right] = \left[\frac{2}{3} \times \frac{1}{2} \right] + \left[\frac{2}{3} \times \frac{2}{7} \right]$$

$$\frac{2}{3} \times \left[\frac{(1 \times 7) + (2 \times 2)}{14} \right] = \frac{2}{6} + \frac{4}{21} \quad \text{R.W}$$

$$\frac{2}{3} \times \left[\frac{7+4}{14} \right] = \frac{(2 \times 7) + (4 \times 2)}{42} \quad \begin{array}{c} 2 | 6, 21 \\ 3 | 3, 21 \\ 7 | 1, 7 \\ 1, 1 \end{array}$$

$$\frac{2}{3} \times \frac{11}{14} = \frac{14 + 8}{42} \quad 2 \times 3 \times 7 = 42$$

$$= \frac{22}{42} = \frac{22}{42}$$

$$= \frac{11}{21} = \frac{11}{21}$$

Hence proved LHS = RHS

$$5 \quad \left[\frac{1}{5} + \frac{2}{6} \right] \times \frac{4}{7} = \left[\frac{1}{5} \times \frac{4}{7} \right] + \left[\frac{2}{6} \times \frac{4}{7} \right]$$

Sol: L.H.S = R.H.S

$$\left[\frac{1}{5} + \frac{2}{6} \right] \times \frac{4}{7} = \left[\frac{1}{5} \times \frac{4}{7} \right] + \left[\frac{2}{6} \times \frac{4}{7} \right]$$

$$= \left[\frac{(1 \times 6) + (2 \times 5)}{30} \right] \times \frac{4}{7} = \frac{4}{35} + \frac{8}{42}$$

R.W

$$= \frac{6 + 10}{30} \times \frac{4}{7} = \frac{(4 \times 6) + (18 \times 5)}{210}$$

$$\begin{array}{r} 2 | 35, 42 \\ 3 | 35, 21 \\ 5 | 35, 7 \\ \hline 7 | 7, 7 \\ \hline 1, 1 \end{array}$$

$$= \frac{16}{30} \times \frac{4}{7} = \frac{25 + 40}{210}$$

$$2 \times 3 \times 5 \times 7 = 210$$

$$= \frac{64}{210} = \frac{64}{210}$$

Hence proved LHS = RHS

$$6 \quad \frac{4}{7} \times \left[\frac{5}{8} + \frac{14}{3} \right] = \left[\frac{4}{7} \times \frac{5}{8} \right] + \left[\frac{4}{7} \times \frac{14}{3} \right]$$

Sol: L.H.S = R.H.S

$$\frac{4}{7} \times \left[\frac{5}{8} + \frac{14}{3} \right] = \left[\frac{4}{7} \times \frac{5}{8} \right] + \left[\frac{4}{7} \times \frac{14}{3} \right]$$

R.W

$$= \frac{4}{7} \times \left[\frac{(5 \times 3) + (14 \times 8)}{24} \right] = \frac{20}{56} + \frac{56}{21}$$

$$\begin{array}{r} 2 | 56, 21 \\ 2 | 28, 21 \\ 2 | 14, 21 \\ \hline 3 | 7, 21 \\ \hline 7 | 7, 7 \\ \hline 1, 1 \end{array}$$

$$= \frac{4}{7} \times \frac{15 + 112}{24} = \frac{(20 \times 3) + (56 \times 8)}{168}$$

$$= \frac{4}{7} \times \frac{127}{24} = \frac{60 + 448}{168}$$

$$2 \times 2 \times 2 \times 3 \times 7 = 168$$

$$= \frac{508}{168} = \frac{508}{168}$$

R.W

$$= \frac{254}{84} = \frac{254}{84}$$

$$\frac{448}{x60}$$

$$= \frac{127}{12} = \frac{127}{12}$$

R.W

$$= 10 \frac{7}{12} = 10 \frac{7}{12}$$

$$12 \overline{) \frac{127}{-120} \frac{10}{7}}$$

Hence proved LHS = RHS

$$7 \quad \frac{1}{3} \times \left[\frac{6}{7} + \frac{2}{3} \right] = \left[\frac{1}{3} \times \frac{6}{7} \right] + \left[\frac{1}{3} \times \frac{2}{3} \right]$$

Sol: L.H.S = R.H.S

$$\frac{1}{3} \times \left[\frac{6}{7} + \frac{2}{3} \right] = \left[\frac{1}{3} \times \frac{6}{7} \right] + \left[\frac{1}{3} \times \frac{2}{3} \right]$$

$$\begin{array}{r} 3 | 51, 9 \\ 3 | 7, 3 \\ 7 | 7, 1 \\ \hline 1, 1 \end{array}$$

$$= \frac{1}{3} \times \left[\frac{(6 \times 3) + (2 \times 7)}{21} \right] = \frac{6}{21} + \frac{2}{9}$$

$$3 \times 3 \times 7 = 63$$

$$= \frac{1}{3} \times \frac{18 + 14}{21} = \frac{(6 \times 3) + (2 \times 7)}{63}$$

$$= \frac{1}{3} \times \frac{32}{21} = \frac{18 + 14}{63}$$

$$= \frac{32}{63} = \frac{32}{63}$$

Hence proved LHS = RHS

$$8 \quad \frac{4}{5} \times \left[\frac{15}{4} - \frac{1}{3} \right] = \left[\frac{4}{5} \times \frac{15}{4} \right] - \left[\frac{4}{5} \times \frac{1}{3} \right]$$

Sol: L.H.S = R.H.S

$$\frac{4}{5} \times \left[\frac{15}{4} - \frac{1}{3} \right] = \left[\frac{4}{5} \times \frac{15}{4} \right] - \left[\frac{4}{5} \times \frac{1}{3} \right]$$

$$\begin{array}{r} 2 | 20, 15 \\ 2 | 10, 15 \\ 3 | 5, 15 \\ 5 | 5, 5 \\ \hline 1, 1 \end{array}$$

$$= \frac{4}{5} \times \left[\frac{(15 \times 3) - (1 \times 4)}{21} \right] = \frac{60}{20} - \frac{4}{15}$$

$$2 \times 2 \times 3 \times 5 = 60$$

$$= \frac{4}{5} \times \frac{45 - 4}{12} = \frac{(60 \times 3) - (4 \times 4)}{60}$$

$$= \frac{4}{5} \times \frac{41}{21} = \frac{180 - 16}{60}$$

$$= \frac{164}{60} = \frac{164}{60}$$

$$= \frac{84}{30} = \frac{84}{30}$$

$$= \frac{14}{15} = \frac{14}{15}$$

$$= \frac{14}{5} = \frac{14}{5}$$

$$= 2 \frac{4}{5} = 2 \frac{4}{5}$$

Hence proved LHS = RHS

9. $\frac{6}{7} \times \left[\frac{14}{12} - \frac{3}{8} \right] = \left[\frac{6}{7} \times \frac{14}{12} \right] - \left[\frac{6}{7} \times \frac{3}{8} \right]$ R.W

Sol: L.H.S = R.H.S

$$\begin{aligned} \frac{6}{7} \times \left[\frac{14}{12} - \frac{3}{8} \right] &= \left[\frac{6}{7} \times \frac{14}{12} \right] - \left[\frac{6}{7} \times \frac{3}{8} \right] \\ &= \frac{6}{7} \times \left[\frac{(14 \times 2) - (3 \times 3)}{24} \right] = \frac{84}{84} - \frac{18}{56} \\ &= \frac{6}{7} \times \frac{28 - 9}{24} = \frac{(84 \times 2) - (18 \times 3)}{168} \quad 2 \times 2 \times 2 \times 3 = 24 \\ &= \frac{6}{7} \times \frac{19}{24} = \frac{168 + 54}{168} \\ &= \frac{114}{168} = \frac{114}{168} \\ &= \frac{57}{84} = \frac{57}{84} \end{aligned}$$

2 \times 2 \times 2 \times 3 \times 7 = 168

Hence proved LHS = RHS

2	12, 8
2	6, 4
2	3, 2
3	3, 1
	1, 1

10. $\left[\frac{2}{3} + \frac{1}{6} \right] \times \frac{2}{9} = \left[\frac{2}{3} \times \frac{2}{9} \right] + \left[\frac{1}{6} \times \frac{2}{9} \right]$ R.W

Sol: L.H.S = R.H.S

$$\begin{aligned} \left[\frac{2}{3} + \frac{1}{6} \right] \times \frac{2}{9} &= \left[\frac{2}{3} \times \frac{2}{9} \right] + \left[\frac{1}{6} \times \frac{2}{9} \right] \\ &= \left[\frac{(2 \times 2) + (1 \times 1)}{6} \right] \times \frac{2}{9} = \frac{4}{27} + \frac{2}{54} \quad 2 \times 3 = 6 \\ &= \frac{4+1}{6} \times \frac{2}{9} = \frac{(4 \times 2) + (2 \times 1)}{54} \\ &= \frac{5}{6} \times \frac{2}{9} = \frac{8+2}{54} \\ &= \frac{10}{54} = \frac{10}{54} \\ &= \frac{5}{27} = \frac{5}{274} \end{aligned}$$

2 \times 3 \times 3 \times 3 = 54

Hence proved LHS = RHS

The solution of addition, subtraction, multiplication and division of daily life problems:

Example: In fourth class $\frac{3}{8}$ part of 40 students play hockey and $\frac{2}{5}$ of 40 play volleyball. How many remaining students play cricket.

Solution

$$\begin{aligned} \text{Number of Students} &= 40 \times \frac{3}{8} = 5 \times 3 \\ \text{Hockey playing students} &= 15 \end{aligned}$$

$$\begin{aligned} \text{Volleyball playing students} &= \frac{2}{5} \times 40 = 8 \times 2 \\ &= 16 \end{aligned}$$

$$\text{Total of hockey and volleyball students play} = 16 + 15 = 31$$

$$\begin{aligned} \text{Cricket play is students.} &= 40 - 31 \\ &= 9 \end{aligned}$$

Example: The multiplication of two fraction is $3 \frac{4}{7}$ of one is $2 \frac{7}{9}$ the find other fraction.

$$2 \frac{7}{9} \quad 3 \frac{4}{7}$$

Solution:

$$\begin{aligned} 3 \frac{4}{7} \div 2 \frac{7}{9} &= \frac{25}{7} \div \frac{25}{9} \\ &= \frac{25}{7} \times \frac{9}{25} \\ &= \frac{9}{7} = 1 \frac{2}{7} \end{aligned}$$

→ EXERCISE 3.5 ←

Q1: Abida completed a $\frac{1}{9}$ work on first day, on second day she worked $\frac{4}{9}$ on second day and on third day she worked $\frac{2}{9}$. Find her total completed works.

$$\begin{aligned}\text{Sol: } & \frac{1}{9} + \frac{4}{9} + \frac{2}{9} \\ &= \frac{1+4+2}{9} \\ &= \frac{7}{9}\end{aligned}$$

Ans: Total completed work of Abidais $= \frac{7}{9}$

Q2: A pond is filled of $\frac{2}{9}$ part. How much water is required to fill its $\frac{7}{9}$ part?

$$\begin{aligned}\text{Sol: } & \frac{7}{9} - \frac{2}{9} \\ &= \frac{7-2}{9} \\ &= \frac{5}{9}\end{aligned}$$

Ans: $\frac{5}{9}$ water is required to fill $\frac{7}{9}$ part

Q3: Hareem reads part of $\frac{4}{15}$ of a book in first day. One second day She reads $\frac{7}{15}$. Find the total fraction of reading book.

$$\begin{aligned}\text{Sol: } & \frac{7}{15} + \frac{4}{15} \\ &= \frac{7+4}{15} \\ &= \frac{11}{15}\end{aligned}$$

Ans: The remaining fraction of read book is $\frac{11}{15}$

Q4: Amina washes 15 cloths in 75 minutes. Find in how much time she washes a cloth?

Sol:

Amina washes 15 cloths in 75 minutes.
She washes 1 cloth in minutes = ?

Then:

$$\begin{array}{r} 5 \\ 15 \overline{) 75} \\ \underline{-75} \\ 00 \end{array}$$

Ans: She washes one cloth is 5 minutes.

Q5: Rabia cooks four meals in $1\frac{1}{2}$ minutes, when Sadia cooks four meals in $2\frac{1}{2}$ minutes. Find how much more time does Sadia spend?

Method.1:

$$\begin{aligned}\text{Rabia cooks meal in } & 1\frac{1}{2} \\ &= \frac{3}{2} \times \frac{30}{60} \\ &= 90 \text{ minutes.}\end{aligned}$$

Sadia cooks meal in $2\frac{1}{2}$

$$\begin{aligned}&= \frac{5}{2} \times \frac{30}{60} \\ &= 150 \text{ minutes.} \\ &= 150 - 90 \\ &= 60 \text{ minutes or 1 hour}\end{aligned}$$

Second method

$$\begin{aligned}&= 2\frac{1}{2} - 1\frac{1}{2} \\ &= \frac{5}{2} - \frac{3}{2} \\ &= \frac{5-3}{2} \\ &= \frac{2}{2} \\ &= 1\end{aligned}$$

Ans: Sadia cooks meal 1 hour later than Rabia.

Sadia cooks meal 1 hour later than Rabia.

Solve the problems of fraction on BODMAS rule:

We know that in BODMAS rule bracket is solved then division multiplication, addition and subtraction are solved. There are three types of Brackets.

Rounder parenthesis bracket = ()

Curly or braces bracket = { }

Square bracket = []

Bar over bracket = —

Example: Solve the following with help pf BODMAS rule.

$$\begin{aligned}
 & 2 \frac{2}{3} + \left\{ \left(5 \frac{4}{2} \div 2 \right) - \frac{1}{3} \right\} \\
 & 2 \frac{2}{3} + \left\{ \left(5 \frac{4}{2} \div 2 \right) - \frac{1}{3} \right\} \\
 & = \frac{8}{3} + \left\{ \left(\frac{14}{2} \times \frac{1}{2} \right) - \frac{1}{3} \right\} \\
 & = \frac{8}{3} + \left\{ \frac{7}{2} - \frac{1}{3} \right\} \\
 & = \frac{8}{3} + \left\{ \frac{21-2}{6} \right\} \\
 & = \frac{8}{3} + \frac{19}{6} \\
 & = \frac{16+19}{6} \\
 & = \frac{35}{6} = 5 \frac{5}{6}
 \end{aligned}$$

→ EXERCISE 3.6 ←

Q.1: Simplify:

i $4 \frac{1}{2} + \left\{ \left(3 \frac{1}{5} + 1 \frac{3}{4} \right) \times 5 \right\}$ R.W

$2 \mid 5, 4$	2
$2 \mid 5, 2$	
$5 \mid 5, 1$	
$1, 1$	

Sol: $4 \frac{1}{2} + \left\{ \left(3 \frac{1}{5} + 1 \frac{3}{4} \right) \times 5 \right\}$

$$\begin{aligned}
 & 4 \frac{1}{2} + \left\{ \left(\frac{16}{5} + \frac{7}{4} \right) \times 5 \right\} \\
 & 4 \frac{1}{2} + \left\{ \left(\frac{16 \times 4 + 7 \times 5}{20} \right) \times 5 \right\} \\
 & 4 \frac{1}{2} + \left\{ \left(\frac{64+35}{20} \right) \times 5 \right\} \\
 & 4 \frac{1}{2} + \left\{ \frac{99}{20} \times \frac{1}{4} \right\} \\
 & 4 \frac{1}{2} + \left\{ \frac{99}{4} \right\} \\
 & 4 \frac{1}{2} + \frac{99}{4} \\
 & = \frac{9}{2} + \frac{99}{4} \\
 & = \frac{(9 \times 2) + (99 \times 1)}{40} \\
 & = \frac{18+99}{4} = \frac{117}{4} \\
 & = 29 \frac{1}{4} \text{ Ans:}
 \end{aligned}$$

$2 \times 2 \times 5 = 20$

$2 \mid 2, 20$	2
$2 \mid 1, 10$	
$5 \mid 1, 5$	
$1, 1$	

$2 \times 2 \times 5 = 20$

$4 \mid 117$	4
$4 \mid -8$	
$29 \overline{) 37}$	
36	
01	

R.W

2 $24 + \left[3 \times \left\{ 10 \frac{1}{2} - \left(\frac{5}{6} \div \frac{1}{3} \right) \right\} \right]$

Sol: $24 + \left[3 \times \left\{ 10 \frac{1}{2} - \left(\frac{5}{6} \div \frac{1}{3} \right) \right\} \right]$

$$24 + \left[3 \times \left\{ 10 \frac{1}{2} - \left(\frac{5}{6} \times \frac{3}{1} \right) \right\} \right]$$

$$24 + \left[3 \times \left\{ \frac{21}{2} - \frac{5}{2} \right\} \right]$$

$$24 + \left[3 \times \left\{ \frac{21-5}{2} \right\} \right]$$

$$\frac{24}{1} + \left[\frac{3}{1} \times \frac{16}{2} \right]$$

$$= \frac{24}{1} + \frac{48}{2}$$

$$= \frac{(24 \times 2) + (48 \times 1)}{2}$$

$$= \frac{48 + 48}{20}$$

$$= \frac{48}{2} \cancel{48}$$

$$= 48 \text{ Ans:}$$

3 $\frac{3}{8} + \left\{ 4 \frac{1}{2} + \left(\frac{7}{10} - \frac{1}{5} \right) \right\}$

Sol: $\frac{3}{8} + \left\{ 4 \frac{1}{2} + \left(\frac{7}{10} - \frac{1}{5} \right) \right\}$

$$= \frac{3}{8} + \left\{ \frac{9}{4} + \left(\frac{(7 \times 1) - (1 \times 2)}{10} \right) \right\}$$

$$= \frac{3}{8} + \left\{ \frac{9}{4} + \left(\frac{7-2}{10} \right) \right\}$$

$$= \frac{3}{8} + \left\{ \frac{9}{4} + \frac{5}{10} \right\}$$

$$= \frac{3}{8} + \left\{ \frac{(9 \times 5) + (5 \times 1)}{10} \right\}$$

$$= \frac{3}{8} + \left\{ \frac{45 + 5}{10} \right\}$$

$$= \frac{3}{8} + \frac{50}{10}$$

$$= \frac{(3 \times 5) + (50 \times 4)}{40}$$

$$= \frac{15 + 200}{40}$$

$$= \frac{215}{40}$$

$$= \frac{43}{8}$$

$$= 5 \frac{3}{8} \text{ Ans:}$$

R.W

$$\begin{array}{r} 2 | 8, 10 \\ \hline 2 | 4, 5 \end{array}$$

$$\begin{array}{r} 2 | 2, 5 \\ \hline 5 | 1, 5 \end{array}$$

$$\begin{array}{r} 5 | 1, 5 \\ \hline 1, 1 \end{array}$$

$$2 \times 2 \times 2 \times 5 = 40$$

$$\begin{array}{r} 8 | 43 \\ \hline 8 | -40 \\ \hline 03 \end{array}$$

4 $\left[\left\{ 4 \frac{1}{2} + \left(5 \frac{1}{3} \times 3 \right) - 2 \frac{2}{3} \right\} \right] + \frac{2}{3}$

Sol: $\left[\left\{ 4 \frac{1}{2} + \left(5 \frac{1}{3} \times 3 \right) - 2 \frac{2}{3} \right\} \right] + \frac{2}{3}$ R.W

$\left[\left\{ 4 \frac{1}{2} + \left(\frac{16}{3} \times \frac{3}{1} \right) - \frac{8}{3} \right\} \right] + \frac{2}{3}$

$\left[\left\{ \frac{7}{2} + \frac{48}{3} - \frac{8}{3} \right\} \right] + \frac{2}{3}$

$\left[\left\{ \frac{7 \times 3 + 48 \times 2 - 8 \times 2}{6} \right\} \right] + \frac{2}{3}$

$\left[\left\{ \frac{21 + 96 - 16}{6} \right\} \right] + \frac{2}{3}$

$\left[\left\{ \frac{117 - 16}{6} \right\} \right] + \frac{2}{3}$

$\left[\frac{101}{6} \right] + \frac{2}{3}$

$= \frac{101}{6} + \frac{2}{3}$

$= \frac{(101 \times 1) + (2 \times 2)}{6}$

$= \frac{101 + 4}{6}$

$= \frac{105}{6}$

$= 17 \frac{3}{6}$ Ans:

$\begin{array}{r} 2 | 2, 2, 3 \\ 3 | 1, 1, 3 \\ \hline 1, 1, 1 \end{array}$

$2 \times 3 = 6$

$\begin{array}{r} 2 | 3, 6 \\ 3 | 3, 3 \\ \hline 1, 1 \end{array}$

$2 \times 3 = 6$

$6 \begin{array}{r} 17 \\ 105 \\ -6 \\ \hline 45 \\ 42 \\ \hline 03 \end{array}$

5 $\frac{5}{2} \times \left[\frac{7}{6} + \left\{ \frac{245}{2} - \left(\frac{4}{3} \times 121 \div \frac{11}{8} \right) \right\} \right]$

Sol: $\frac{5}{2} \times \left[\frac{7}{6} + \left\{ \frac{245}{2} - \left(\frac{4}{3} \times \frac{121}{1} \times \frac{8}{11} \right) \right\} \right]$

$\frac{5}{2} \times \left[\frac{7}{6} + \left\{ \frac{245}{2} - \left(\frac{4}{3} \times \frac{11}{1} \times \frac{8}{1} \right) \right\} \right]$

$\frac{5}{2} \times \left[\frac{7}{6} + \left\{ \frac{245}{2} - \frac{352}{3} \right\} \right]$

$\frac{5}{2} \times \left[\frac{7}{6} + \left\{ \frac{(245 \times 3) - (352 \times 2)}{6} \right\} \right]$

$\frac{5}{2} \times \left[\frac{7}{6} + \left\{ \frac{735 - 704}{6} \right\} \right]$

$\frac{5}{2} \times \left[\frac{7}{6} + \frac{31}{6} \right]$

$\frac{5}{2} \times \left[\frac{7 + 31}{6} \right]$

$= \frac{5}{2} + \frac{38}{6}$

$= \frac{5}{1} \times \frac{19}{6}$

$= \frac{95}{6}$

$= 15 \frac{5}{6}$ Ans:

6 $\begin{array}{r} 15 \\ 95 \\ -6 \\ \hline 35 \\ -30 \\ \hline 5 \end{array}$

6
$$\left[2 \frac{1}{3} \div \left\{ 1 \frac{1}{3} + \left(1 \frac{1}{3} \times 3 \frac{1}{5} - 3 \frac{1}{5} \right) \right\} \times 1 \frac{4}{5} \right]$$

Sol:
$$\left[2 \frac{1}{3} \div \left\{ 1 \frac{1}{3} + \left(1 \frac{1}{3} \times 3 \frac{1}{5} - 3 \frac{1}{5} \right) \right\} \times 1 \frac{4}{5} \right]$$

$$\left[\frac{7}{3} \div \left\{ \frac{4}{2} + \left(\frac{4}{3} \times \frac{16}{5} - \frac{16}{5} \right) \right\} \times \frac{9}{5} \right]$$

$$\left[\frac{7}{3} \div \left\{ \frac{4}{2} + \left(\frac{64}{15} - \frac{16}{5} \right) \right\} \times \frac{9}{5} \right]$$

$$\left[\frac{7}{3} \div \left\{ \frac{4}{2} + \left(\frac{64 \times 1 - 16 \times 3}{15} \right) \right\} \times \frac{9}{5} \right]$$

$$\left[\frac{7}{3} \div \left\{ \frac{4}{2} + \left(\frac{64 - 48}{15} \right) \right\} \times \frac{9}{5} \right]$$

$$\left[\frac{7}{3} \div \left\{ \frac{4}{2} + \frac{16}{15} \right\} \times \frac{9}{5} \right]$$

$$\frac{7}{3} \div \left\{ \frac{4 \times 5 + 16 \times 1}{15} \right\} \times \frac{9}{5}$$

$$\frac{7}{3} \div \left\{ \frac{20 + 16}{15} \right\} \times \frac{9}{5}$$

$$\frac{7}{3} \div \frac{36}{15} \times \frac{9}{5}$$

$$\frac{7}{3} \times \frac{15^3}{36^4} \times \frac{9}{5}$$

$$\frac{21}{12} = \frac{7}{4} \quad \text{Ans:}$$

R.W

$$\begin{array}{c|cc} 3 & 15, 5 \\ \hline 5 & 5, 5 \\ \hline 1 & , 1 \end{array}$$

$$\begin{array}{c|cc} 3 & 3, 15 \\ \hline 5 & 1, 5 \\ \hline 1 & , 1 \end{array}$$

$$3 \times 5 = 15$$

$$5 \overline{) \begin{array}{r} 5 \\ 28 \\ -25 \\ \hline 3 \end{array}}$$

7
$$\left\{ 1 \frac{1}{4} + 1 \frac{1}{10} \times \left(6 \frac{1}{2} \times 1 \frac{5}{39} \right) \right\}$$

Sol:
$$\left\{ 1 \frac{1}{4} + 1 \frac{1}{10} \times \left(\frac{13}{2} \times 1 \frac{44}{39} \right) \right\}$$

$$\left\{ \frac{5}{4} + \frac{11}{10} \times \frac{22}{3} \right\}$$

$$\left\{ \frac{5}{4} + \frac{242}{30} \right\}$$

$$\left\{ \frac{5 \times 15 + 242 \times 2}{60} \right\}$$

$$\left\{ \frac{75 + 484}{60} \right\}$$

$$= \frac{559}{60}$$

$$= 9 \frac{19}{60} \quad \text{Ans:}$$

R.W

$$\begin{array}{r} 2 | 4, 15 \\ 2 | 2, 15 \\ 3 | 1, 15 \\ \hline 5 | 1, 5 \\ \hline 1, 1 \end{array}$$

$$2 \times 2 \times 3 \times 5 = 60$$

8
$$2 \frac{1}{3} \times 1 \frac{5}{7} \times 1 \frac{2}{5}$$

Sol:
$$2 \frac{1}{3} \times 1 \frac{5}{7} \times 1 \frac{2}{5}$$

$$= \frac{7}{1} \times \frac{4}{1} \times \frac{1}{5}$$

$$= \frac{28}{5}$$

$$= 5 \frac{3}{5} \quad \text{Ans:}$$

9) $\frac{1}{2} + \left\{ 2 \frac{1}{4} - \left(\frac{1}{3} + \frac{1}{6} \right) \right\}$

Sol: $\frac{1}{2} + \left\{ 2 \frac{1}{4} - \left(\frac{1}{3} + \frac{1}{6} \right) \right\}$

$\frac{1}{2} + \left\{ \frac{9}{4} - \left(\frac{1 \times 2 + 1 \times 1}{6} \right) \right\}$

$\frac{1}{2} + \left\{ \frac{9}{4} - \left(\frac{2+1}{6} \right) \right\}$

$\frac{1}{2} + \left\{ \frac{9}{4} - \frac{3}{6} \right\}$

$\frac{1}{2} + \left\{ \frac{9 \times 3 - 3 \times 2}{12} \right\}$

$\frac{1}{2} + \frac{12}{12}$

$\frac{1 \times 6 + 12 \times 1}{12} = \frac{6+12}{12}$

$\frac{6}{4} = 1 \frac{2}{4}$ Ans:

R.W

$$\begin{array}{r} 2 \mid 3, 6 \\ 3 \mid 3, 3 \\ \hline 1, 1 \end{array}$$

 $2 \times 3 = 6$

$$\begin{array}{r} 2 \mid 4, 6 \\ 2 \mid 2, 3 \\ \hline 1, 3 \end{array}$$

 $2 \times 2 \times 3 = 12$

$$\begin{array}{r} 2 \mid 2, 12 \\ 2 \mid 1, 6 \\ \hline 3 \mid 1, 3 \\ \hline 1, 1 \end{array}$$

 $2 \times 2 \times 3 = 12$

10) $\frac{2}{5} + \left\{ 2 \frac{5}{6} - \left(\frac{1}{2} + \frac{1}{3} \right) \right\}$

Sol: $\frac{2}{5} + \left\{ 2 \frac{5}{6} - \left(\frac{1}{2} + \frac{1}{3} \right) \right\}$

$\frac{2}{5} + \left\{ \frac{17}{6} - \left(\frac{1}{2} + \frac{1}{3} \right) \right\}$

$\frac{2}{5} + \left\{ \frac{17}{6} - \left(\frac{1 \times 3 + 1 \times 2}{6} \right) \right\}$

$\frac{2}{5} + \left\{ \frac{17}{6} - \left(\frac{3+2}{6} \right) \right\}$

$\frac{2}{5} + \left\{ \frac{17}{6} - \frac{5}{6} \right\}$

R.W

$$\begin{array}{r} 2 \mid 2, 3 \\ 3 \mid 1, 3 \\ \hline 1, 1 \end{array}$$

 $2 \times 3 = 6$

$$\begin{array}{r} 2 \mid 5, 6 \\ 3 \mid 5, 3 \\ 5 \mid 5, 1 \\ \hline 1, 1 \end{array}$$

$2 \times 3 \times 5 = 30$

$\frac{2}{5} + \left\{ \frac{17-5}{6} \right\}$

$\frac{2}{5} + \frac{12}{6}$

$\frac{2 \times 6 + 12 \times 5}{30}$

$= \frac{12+60}{30} = \frac{72}{30} = \frac{12}{5}$

$= \frac{12}{5} = 2 \frac{2}{5}$ Ans:

$3 \sqrt{12}$
 $\frac{12}{-12}$
 00

DECIMAL FRACTION: Addition of decimal fraction:

The addition of decimal fraction is started on the base of decimal and is slowed in common rule of addition.

Example Add: 15.004 + 0.06

$$\begin{array}{r} 15.004 \\ + 0.06 \\ \hline 15.064 \end{array}$$

Example add: 4.75 + 254

$$\begin{array}{r} 2.52 \\ + 4.75 \\ \hline 7.27 \end{array}$$

EXERCISE 4.1

Q.1: Perform the addition.

1) 2.003 + 5.004

Sol:
$$\begin{array}{r} 2.003 \\ + 5.004 \\ \hline 7.007 \end{array}$$
 Ans:

2) 7.36 + 0.062

Sol:
$$\begin{array}{r} 7.36 \\ + 0.062 \\ \hline 7.422 \end{array}$$
 Ans:

3 $13.25 + 5.9$

Sol:
$$\begin{array}{r} 13.25 \\ + 5.9 \\ \hline 19.15 \end{array}$$
 Ans:

5 $3.2034 + 6.806$

Sol:
$$\begin{array}{r} 3.2034 \\ + 6.806 \\ \hline 10.0094 \end{array}$$
 Ans:

7 $63.71 + 35.67$

Sol:
$$\begin{array}{r} 63.71 \\ + 35.67 \\ \hline 99.38 \end{array}$$
 Ans:

9 $23.34 + 39.175$

Sol:
$$\begin{array}{r} 23.34 \\ + 39.175 \\ \hline 62.515 \end{array}$$
 Ans:

11 $2.1456 + 3.08$

Sol:
$$\begin{array}{r} 2.1456 \\ + 3.08 \\ \hline 5.2256 \end{array}$$
 Ans:

13 $6.5623 + 2.1345$

Sol:
$$\begin{array}{r} 6.5623 \\ + 2.1345 \\ \hline 8.6968 \end{array}$$
 Ans:

4 $2.503 + 1.792$

Sol:
$$\begin{array}{r} 2.503 \\ + 1.792 \\ \hline 4.295 \end{array}$$
 Ans:

6 $18.42 + 3.0643$

Sol:
$$\begin{array}{r} 18.42 \\ + 3.0643 \\ \hline 21.4843 \end{array}$$
 Ans:

8 $6.421 + 3.375$

Sol:
$$\begin{array}{r} 6.421 \\ + 3.375 \\ \hline 9.796 \end{array}$$
 Ans:

10 $2.7364 + 3.5833$

Sol:
$$\begin{array}{r} 2.7364 \\ + 3.5833 \\ \hline 6.3197 \end{array}$$
 Ans:

12 $4.35 + 1.672$

Sol:
$$\begin{array}{r} 4.35 \\ + 1.672 \\ \hline 6.022 \end{array}$$
 Ans:

14 $7.0407 + 8.2859$

Sol:
$$\begin{array}{r} 7.0407 \\ + 8.2859 \\ \hline 15.3266 \end{array}$$
 Ans:

15 $38.2025 + 21.1526$

Sol:
$$\begin{array}{r} 38.2025 \\ + 21.1526 \\ \hline 59.3551 \end{array}$$
 Ans:

17 $8.045 + 8.438$

Sol:
$$\begin{array}{r} 8.045 \\ + 8.438 \\ \hline 16.483 \end{array}$$
 Ans:

16 $15.234 + 21.460$

Sol:
$$\begin{array}{r} 15.234 \\ + 21.460 \\ \hline 36.694 \end{array}$$
 Ans:

18 $4.37 + 5.90$

Sol:
$$\begin{array}{r} 4.37 \\ + 5.90 \\ \hline 10.27 \end{array}$$
 Ans:

Subtraction of decimal fractions:

In subtraction of decimal fraction, the decimal is placed under the decimal and is solved as common rule of subtraction.

Example Subtract 5 to 2.952

$$\begin{array}{r} 5.000 \\ - 2.952 \\ \hline 2.048 \end{array}$$

Example Subtract 16.73 to 12.67

$$\begin{array}{r} 16.73 \\ - 12.67 \\ \hline 4.06 \end{array}$$

EXERCISE 4.2

Q.2: Find the difference.

1 $127.20 - 86.35$

Sol:
$$\begin{array}{r} 127.20 \\ - 86.35 \\ \hline 40.85 \end{array}$$
 Ans:

2 $27.47 - 9.08$

Sol:
$$\begin{array}{r} 27.47 \\ - 9.08 \\ \hline 18.39 \end{array}$$
 Ans:

3 $35.78 - 13.53$

Sol:
$$\begin{array}{r} 35.78 \\ - 13.53 \\ \hline 22.25 \end{array}$$
 Ans:

5 $15.27 - 10.08$

Sol:
$$\begin{array}{r} 15.27 \\ - 10.08 \\ \hline 5.19 \end{array}$$
 Ans:

7 $8.3687 - 3.25$

Sol:
$$\begin{array}{r} 8.3687 \\ - 3.25 \\ \hline 5.1187 \end{array}$$
 Ans:

9 $8.608 - 4.342$

Sol:
$$\begin{array}{r} 8.608 \\ - 4.342 \\ \hline 4.266 \end{array}$$
 Ans:

11 $6.5839 - 3.4521$

Sol:
$$\begin{array}{r} 6.5839 \\ - 3.4521 \\ \hline 3.1318 \end{array}$$
 Ans:

13 $3.469 - 1.2357$

Sol:
$$\begin{array}{r} 3.4690 \\ - 1.2357 \\ \hline 2.2333 \end{array}$$
 Ans:

15 $2.1345 - 1.04$

Sol:
$$\begin{array}{r} 2.1345 \\ - 1.04 \\ \hline 1.0945 \end{array}$$
 Ans:

4 $174.25 - 92.23$

Sol:
$$\begin{array}{r} 174.25 \\ - 92.23 \\ \hline 82.02 \end{array}$$
 Ans:

6 $28.3696 - 19.6778$

Sol:
$$\begin{array}{r} 28.3696 \\ - 19.6778 \\ \hline 8.6918 \end{array}$$
 Ans:

8 $7.04 - 2.1345$

Sol:
$$\begin{array}{r} 7.0400 \\ - 2.1345 \\ \hline 4.9055 \end{array}$$
 Ans:

10 $1.5678 - 0.2457$

Sol:
$$\begin{array}{r} 1.5678 \\ - 0.2457 \\ \hline 1.3221 \end{array}$$
 Ans:

12 $24.2856 - 14.1966$

Sol:
$$\begin{array}{r} 24.2856 \\ - 14.1966 \\ \hline 10.0890 \end{array}$$
 Ans:

14 $5.38 - 3.5906$

Sol:
$$\begin{array}{r} 5.3800 \\ - 3.5906 \\ \hline 1.7894 \end{array}$$
 Ans:

Multiplication of decimal fraction

The multiplication of decimal fraction is also solved as the multiplication of natural number and numbers in right side of decimal are connected the decimal is placed in result on the left of same number of decimal in values.

Multiplication of factors by 10, 100 and 1000:

Example: Multiply 234.52×100

Solution:
$$\begin{array}{r} 234.52 \\ \times 100 \\ \hline 00000 \\ 00000 \times \\ 23452 \times \times \\ \hline 23452.00 \end{array}$$

Example: Multiply 2.5105×10

Solution:
$$\begin{array}{r} 2.5105 \\ \times 10 \\ \hline 00000 \\ 00000 \times \\ 25105 \times \\ \hline 25.1050 \end{array}$$

EXERCISE 4.3

Q.1: Solve.

1 0.345×515

Solution:
$$\begin{array}{r} 0.345 \\ \times 515 \\ \hline 1725 \\ 0345 \times \\ 1725 \times \times \\ \hline 177.675 \end{array}$$

2 53.49×7

Solution:
$$\begin{array}{r} 53.49 \\ \times 7 \\ \hline 374.43 \end{array}$$

3 73.82×14

Solution:
$$\begin{array}{r} 73.82 \\ \times 14 \\ \hline 29528 \\ 7382 \times \\ \hline 1033.48 \end{array}$$

4 83.673×18

Solution:
$$\begin{array}{r} 83.673 \\ \times 18 \\ \hline 669384 \\ 83673 \times \\ \hline 1506.114 \end{array}$$

5 7.675×1000

Solution:

$$\begin{array}{r}
 7.675 \\
 \times 1000 \\
 \hline
 7675.000
 \end{array}$$

6 22.354×15

Solution:

$$\begin{array}{r}
 22.354 \\
 \times 15 \\
 \hline
 111770 \\
 22354 \\
 \hline
 335.310
 \end{array}$$

7 3.72×100

Solution:

$$\begin{array}{r}
 3.72 \\
 \times 100 \\
 \hline
 372.00
 \end{array}$$

8 5.385×10

Solution:

$$\begin{array}{r}
 5.385 \\
 \times 10 \\
 \hline
 53.850
 \end{array}$$

9 4.932×21

Solution:

$$\begin{array}{r}
 4.932 \\
 \times 21 \\
 \hline
 9864 \\
 4932 \\
 \hline
 103.572
 \end{array}$$

10 0.995×19

Solution:

$$\begin{array}{r}
 0.995 \\
 \times 19 \\
 \hline
 18.905
 \end{array}$$

11 136.75×100

Solution:

$$\begin{array}{r}
 136.75 \\
 \times 100 \\
 \hline
 13675.00
 \end{array}$$

12 931.752×1000

Solution:

$$\begin{array}{r}
 931.752 \\
 \times 1000 \\
 \hline
 931752.000
 \end{array}$$

13 7.06×25

Solution:

$$\begin{array}{r}
 7.06 \\
 \times 25 \\
 \hline
 3530 \\
 1412 \\
 \hline
 176.50
 \end{array}$$

14 542.13×317

Solution:

$$\begin{array}{r}
 542.13 \\
 \times 317 \\
 \hline
 379491 \\
 54213 \\
 162639 \\
 \hline
 171855.21
 \end{array}$$

15 0.027×19

Solution:

$$\begin{array}{r}
 0.027 \\
 \times 19 \\
 \hline
 00243 \\
 0027 \\
 \hline
 00.513
 \end{array}$$

16 542.17×495

Solution:

$$\begin{array}{r}
 542.17 \\
 \times 595 \\
 \hline
 271085 \\
 487953 \\
 271085 \\
 \hline
 322591.15
 \end{array}$$

17 354.26×100

Solution:

$$\begin{array}{r}
 354.26 \\
 \times 100 \\
 \hline
 35426 \\
 \hline
 35426.00
 \end{array}$$

18 5.445×23

Solution:

$$\begin{array}{r}
 5.445 \\
 \times 23 \\
 \hline
 16335 \\
 10890 \\
 \hline
 125.235
 \end{array}$$

19 273.92×81

Solution:

$$\begin{array}{r}
 273.92 \\
 \times 81 \\
 \hline
 219136 \\
 22187.52
 \end{array}$$

20 0.037×1000

Solution:

$$\begin{array}{r}
 0.037 \\
 \times 1000 \\
 \hline
 0037
 \end{array}$$

21 5.275×415

Solution:
$$\begin{array}{r}
 5.275 \\
 \times 415 \\
 \hline
 26375 \\
 5275 \times \\
 21100 \times \\
 \hline
 2189.125
 \end{array}$$

23 135.07×59

Solution:
$$\begin{array}{r}
 135.07 \\
 \times 59 \\
 \hline
 121563 \\
 67535 \times \\
 \hline
 7969.13
 \end{array}$$

22 245.84×117

Solution:
$$\begin{array}{r}
 245.84 \\
 \times 117 \\
 \hline
 172088 \\
 24584 \times \\
 24584 \times \times \\
 \hline
 28763.28
 \end{array}$$

24 0.0235×15

Solution:
$$\begin{array}{r}
 0.0235 \\
 \times 15 \\
 \hline
 01175 \\
 00235 \times \\
 \hline
 0.3525
 \end{array}$$

Division of decimal fraction:

Division of decimal fraction is soled on the natural numbers division.

Important Information

In decimal division decimal is placed in answer before the number place down.

If two numbers are placed down then zero is placed after decimal in answer.

Example Solve: $352.976 \div 8$

Solution:
$$\begin{array}{r}
 44.122 \\
 8 \overline{)352.976} \\
 -32 \\
 \hline
 32 \\
 -32 \\
 \hline
 .9 \\
 - .8 \\
 \hline
 17 \\
 - 16 \\
 \hline
 16 \\
 - 16 \\
 \hline
 0
 \end{array}$$

$$352.976 \div 8 = 44.122$$

Example Solve: $45.9826 \div 2$

Solution:
$$\begin{array}{r}
 22.9913 \\
 2 \overline{)45.9826} \\
 -4 \\
 \hline
 5 \\
 -4 \\
 \hline
 .19 \\
 - .18 \\
 \hline
 18 \\
 - 18 \\
 \hline
 2 \\
 - 2 \\
 \hline
 6 \\
 - 6 \\
 \hline
 0
 \end{array}$$

$$45.9826 \div 2 = 22.9913$$

EXERCISE 4.4

Perform the division.

(1) $931.278 \div 6$

Sol:

$$\begin{array}{r}
 155.213 \\
 6 \overline{)931.278} \\
 90 \\
 \hline
 31 \\
 30 \\
 \hline
 12 \\
 12 \\
 \hline
 78 \\
 78 \\
 \hline
 00
 \end{array}$$

Ans: 155.213

(2) $147.12 \div 7$

Sol:

$$\begin{array}{r}
 21.0171428571 \\
 7 \overline{)147.12} \\
 147 \\
 \hline
 12 \\
 7 \\
 \hline
 50 \\
 49 \\
 \hline
 10 \\
 7 \\
 \hline
 30 \\
 28 \\
 \hline
 20 \\
 14 \\
 \hline
 60 \\
 56 \\
 \hline
 40 \\
 35 \\
 \hline
 50 \\
 49 \\
 \hline
 10 \\
 7 \\
 \hline
 3
 \end{array}$$

Ans: 21.0171428571

(3) $215.38 \div 11$

Sol:

$$\begin{array}{r}
 19.58 \\
 11 \overline{)215.38} \\
 11 \\
 \hline
 105 \\
 99 \\
 \hline
 63 \\
 55 \\
 \hline
 88 \\
 88 \\
 \hline
 00
 \end{array}$$

Ans: 19.58

(3) $215.38 \div 11$

Sol:

$$\begin{array}{r}
 19.58 \\
 11 \overline{)215.38} \\
 11 \\
 \hline
 105 \\
 99 \\
 \hline
 63 \\
 55 \\
 \hline
 88 \\
 88 \\
 \hline
 00
 \end{array}$$

Ans: 19.58

(4) $127.57 \div 13.6$

Sol:

$$\begin{array}{r}
 9.38 \\
 13.6 \overline{)127.57} \\
 122.4 \\
 \hline
 517 \\
 408 \\
 \hline
 1090 \\
 1088 \\
 \hline
 02
 \end{array}$$

Ans: 9.38

(6) $56.55 \div .15$

Sol:

$$\begin{array}{r}
 3.77 \\
 15 \overline{)56.55} \\
 45 \\
 \hline
 115 \\
 105 \\
 \hline
 105 \\
 105 \\
 \hline
 000
 \end{array}$$

Ans: 3.77

(5) $7.675 \div 2.5$

Sol:

$$\begin{array}{r}
 3.07 \\
 2.5 \overline{)7.675} \\
 75 \\
 \hline
 175 \\
 175 \\
 \hline
 000
 \end{array}$$

Ans: 3.07

(7) $85.785 \div 5$

Sol:

$$\begin{array}{r}
 11.7157 \\
 5 \overline{)85.785} \\
 5 \\
 \hline
 35 \\
 35 \\
 \hline
 7 \\
 5 \\
 \hline
 28 \\
 25 \\
 \hline
 35 \\
 35 \\
 \hline
 00
 \end{array}$$

Ans: 17.157

(8) $90.45 \div 25$

Sol:

$$\begin{array}{r}
 3.618 \\
 25 \overline{)90.45} \\
 75 \\
 \hline
 154 \\
 150 \\
 \hline
 45 \\
 25 \\
 \hline
 200 \\
 200 \\
 \hline
 000
 \end{array}$$

Ans: 3.618

9 $139.4 \div 136$

Sol:

$$\begin{array}{r}
 1.025 \\
 136 \overline{)139.4} \\
 -136 \\
 \hline
 340 \\
 -272 \\
 \hline
 680 \\
 -680 \\
 \hline
 000
 \end{array}$$

Ans: 1.025

10 $127.57 \div 66$

Sol:

$$\begin{array}{r}
 1.9328 \\
 66 \overline{)127.57} \\
 -66 \\
 \hline
 615 \\
 -594 \\
 \hline
 217 \\
 -198 \\
 \hline
 190 \\
 -132 \\
 \hline
 580 \\
 -528 \\
 \hline
 52
 \end{array}$$

Ans: 1.9328

11 $37.368 \div 32$

Solution:

$$\begin{array}{r}
 1.16775 \\
 32 \overline{)37.368} \\
 -32 \\
 \hline
 53 \\
 -32 \\
 \hline
 216 \\
 -192 \\
 \hline
 248 \\
 -224 \\
 \hline
 240 \\
 -224 \\
 \hline
 160 \\
 -160 \\
 \hline
 000
 \end{array}$$

Ans: 1.16775

12 $216.05 \div 35$

Sol:

$$\begin{array}{r}
 6.1728571428 \\
 35 \overline{)216.05} \\
 -210 \\
 \hline
 60 \\
 -35 \\
 \hline
 255 \\
 -245 \\
 \hline
 100 \\
 -70 \\
 \hline
 300 \\
 -280 \\
 \hline
 200 \\
 -175 \\
 \hline
 250 \\
 -245 \\
 \hline
 50 \\
 -35 \\
 \hline
 150 \\
 -140 \\
 \hline
 100 \\
 -70 \\
 \hline
 300 \\
 -280 \\
 \hline
 200
 \end{array}$$

Ans: 6.1728571428

13 $0.0063 \div 7$

Sol:

$$\begin{array}{r}
 0.0009 \\
 7 \overline{)0.0063} \\
 -0.0063 \\
 \hline
 00000
 \end{array}$$

Ans: 0.0009

14 $257.88 \div 15$

Sol:

$$\begin{array}{r}
 17.192 \\
 15 \overline{)257.88} \\
 -15 \\
 \hline
 107 \\
 -105 \\
 \hline
 28 \\
 -15 \\
 \hline
 138 \\
 -135 \\
 \hline
 30 \\
 -30 \\
 \hline
 00
 \end{array}$$

Ans: 17.192

15 $0.0063 \div 9$

Sol:

$$\begin{array}{r}
 0.0007 \\
 9 \overline{)0.0063} \\
 -0.0063 \\
 \hline
 00000
 \end{array}$$

Ans: 0.0007

Simplification of decimal fraction based on BODMAS rule:

Example: Simplify: $[5.17 + \{3.2 \times (4.4 \div 3.3 - 1.1)\}]$

Solutin:

$$\begin{aligned}
 &= [5.17 + \{3.2 \times (4.4 \div 2.2)\}] \\
 &= [5.17 + \{3.2 \times 2\}] \\
 &= [5.17 + 6.4] \\
 &= 11.57
 \end{aligned}$$

EXERCISE 4.5

Q.1: Simplify:

(1) $7.3 - \{1.4 + (0.82 + 1.64)\}$

$$\begin{array}{r}
 \text{R.W} \\
 0.82 \\
 +1.64 \\
 \hline
 2.46 \\
 \text{R.W} \\
 1.40 \\
 +2.46 \\
 \hline
 3.86 \\
 \text{R.W} \\
 7.30 \\
 +3.86 \\
 \hline
 3.44
 \end{array}$$

Sol: $7.3 - \{1.4 + (0.82 + 1.64)\}$

$= 7.3 - \{1.4 + 2.46\}$

$= 7.3 - 3.86$

$= 3.44 \quad \text{Ans:}$

(2) $\{4 \times (1.69 + 2.02)\} + 100.23$

$$\begin{array}{r}
 \text{R.W} \\
 169 \\
 +2.02 \\
 \hline
 3.71 \\
 \text{R.W} \\
 3.71 \\
 \times 4 \\
 \hline
 14.84
 \end{array}$$

Sol: $\{4 \times (1.69 + 2.02)\} + 100.23$

$= \{4 \times 3.71\} + 100.23$

$= 14.84 + 100.23$

$= 115.07 \quad \text{Ans:}$

$$\begin{array}{r}
 \text{R.W} \\
 14.84 \\
 +100.23 \\
 \hline
 115.07
 \end{array}$$

(3) $100 \times [12 - \{5.2 + (2.4 + 2.5)\}]$

$$\begin{array}{r}
 \text{R.W} \\
 2.4 \\
 +2.5 \\
 \hline
 4.9
 \end{array}$$

Sol: $100 \times [12 - \{5.2 + (2.4 + 2.5)\}]$

$= 100 \times [12 - \{5.2 + 4.9\}]$

$= 100 \times [12 - 10.1]$

$= 100 \times 1.9$

$= 190.0 \quad \text{Ans:}$

$$\begin{array}{r}
 \text{R.W} \\
 10.1 \\
 \text{R.W} \\
 12.0 \\
 -10.1 \\
 \hline
 1.9
 \end{array}$$

$$\begin{array}{r}
 \text{R.W} \\
 100 \\
 \times 1.9 \\
 \hline
 900 \\
 100 \\
 \hline
 1900
 \end{array}$$

(4) $1.6 \times [13.55 - \{6.2 + (4.3 + 5.2)\}]$

$$\begin{array}{r}
 \text{R.W} \\
 6.2 \\
 +4.3 \\
 \hline
 10.5 \\
 \text{R.W} \\
 13.55 \\
 -10.5 \\
 \hline
 3.00
 \end{array}$$

Sol: $1.6 \times [13.55 - \{6.2 + 9.5\}]$

$= 1.6 \times [13.55 - 15.7]$

$= 1.6 \times [-2.15]$

$= -3.44 \quad \text{Ans:}$

(5) $2.25 \times [1.005 + \{0.5 \times (2.75 \div 2.2 \times 4.12)\}]$

Sol: $2.25 \times [1.005 + \{0.5 \times (2.75 \div 2.2 \times 4.12)\}]$

$= 2.25 \times [1.005 + \{0.5 \times (1.25 \times 4.12)\}]$

$= 2.25 \times [1.005 + \{0.5 \times 5.15\}]$

$= 2.25 \times [1.005 + 2.575]$

$= 2.25 \times 3.58$

$= 8.055$

6 $5.6 + 6.07 + (24.75 - 13.95 + 8.44)$

Sol: $5.6 + 6.07 + (24.75 - 13.95 + 8.44)$

= $5.6 + 6.07 + 33.19 - 13.95$

= $5.6 + 6.07 + 19.24$

= 30.91 Ans:

7 $15.9 - 2.9 + (3.84 + 4.35)$

Sol: $15.9 - 2.9 + (3.84 + 4.35)$

= $15.9 - 2.9 + 8.19$

= $13 + 8.19$

= 21.19 Ans:

8 $(3.4 \times 3.5) - (1.12 + 0.1) - 0.02$

Sol: $(3.4 \times 3.5) - (1.12 + 0.1) - 0.02$

= $11.9 - 1.22 - 0.02$

= $11.9 - 1.24$

= 10.66 Ans:

9 $1.5 - 0.2 + (4.84 + 5.01)$

Sol: $1.5 - 0.2 + (4.84 + 5.01)$

= $1.5 - 0.2 + 9.85$

= $11.35 - 0.2$

= 11.15 Ans:

10 $5.6 + 7.06 + (24.76 - 13.44)$

Sol: $5.6 + 7.06 + (24.76 - 13.44)$

= $5.6 + 7.06 + 11.32$

= 23.98 Ans:

11 $33.01 \times 2.1 + \{7.2 + (3.2 - 2.1)\}$

Sol: $33.01 \times 2.1 + \{7.2 + (3.2 - 2.1)\}$

= $33.01 \times 2.1 + \{7.2 + 1.1\}$

= $33.01 \times 2.1 + 8.3$

= $69.321 + 8.3$

= 77.621 Ans:

12 $(4.5 \times 2.3) - (1.02 + 0.1)$

Sol: $(4.5 \times 2.3) - (1.02 + 0.1)$

= $10.35 - 1.12$

= 9.23 Ans:

13 $\{4 \times (2.69 + 1.02)\} + 35.23$

Sol: $\{4 \times (2.69 + 1.02)\} + 35.23$

= $\{4 \times 3.71\} + 35.23$

= $14.84 + 35.23$

= 50.07 Ans:

The correct way of writing of decimal fraction:

In decimal fraction the right sided number of decimal is main number, if it is less than five that does not change if it is five or greater than five it is converted in to next number.

Example: i 4.56 ii 0.38 iii 9.371 iv 4.325

Solution: In 4.56 the digit 6 in after decimal which is more than five, it will convert into 6. Then number becomes 4.6

Solution: 0.38 in thin fraction last digit in right side is 8 it is also greater than 5 it is added with left sided digit as one. Then fraction becomes 0.4.

Solution: 9.371 in the fraction the last digit on the fraction on right side is one. It is less than five it is converted into zero. Then in next round digit is 7 which is added with 3 as the fraction is 9.4

Solution: In this fraction, after decimal 3 and 2 are less than five and there are two digits so that these can not be converted, but these will be written in same position.

EXERCISE 4.6

Q.1 Simplify the following fraction upto one digit. By using rounding off rule.

1 4.253 2 10.721 3 56.187
4.25 Ans: 10.72 Ans: 56.19 Ans:

4 0.345 5 55.67 6 7.846
0.35 Ans: 55.7 Ans: 7.85 Ans:

7 9.372 8 2.734 9 3.46
9.37 Ans: 2.73 Ans: 3.5 Ans:

10 3.253 11 74.321 12 35.859
3.25 Ans: 74.32 Ans: 35.86 Ans:

Q.2. Simplify the following fraction upto two digit. By use rounding off rule.

1 4.0084 2 0.00721 3 0.8516

4.01 Ans: 0.01 Ans: 0.86 Ans:

4 10.728 5 5.172 6 56.77

10.8 Ans: 5.2 Ans: 57.0 Ans:

7 5,162 8 9,267 9 0.842

5.2 Ans: 9.3 Ans: 0.8 Ans:

10 56.87 11 78.765 12 18.697

57.0 Ans: 78.8 Ans: 18.70 Ans:

Conversion of common fraction into decimal fractions

Example: i $\frac{4}{6}$ ii $\frac{13}{7}$ iii $\frac{5}{9}$ iv $\frac{10}{8}$

Solution: $\frac{4}{6}$

Solution: ii $\frac{13}{7}$

$$\begin{array}{r}
 0.666 \\
 6 \overline{)40} \\
 36 \\
 \hline
 40 \\
 36 \\
 \hline
 40 \\
 36 \\
 \hline
 4...
 \end{array}$$

$$\text{Answer: } 0.666\dots = \frac{4}{6}$$

Answer: $1.857\dots = \frac{13}{7}$

Solution: **iii** $\frac{5}{9}$

$$\begin{array}{r}
 0.555 \\
 \hline
 9 \left| \begin{array}{r}
 50 \\
 45 \\
 \hline
 50 \\
 45 \\
 \hline
 50 \\
 45 \\
 \hline
 5
 \end{array} \right.
 \end{array}$$

$$\text{Answer: } 0.555\dots = \frac{5}{9}$$

Solution: iv $\frac{10}{8}$

$$\begin{array}{r}
 1.25 \\
 \hline
 8 \overline{)10.0} \\
 \underline{-8} \\
 \hline
 20 \\
 \underline{-16} \\
 \hline
 40 \\
 \underline{-40} \\
 \hline
 0
 \end{array}$$

$$\text{Answer: } 1.25 = \frac{10}{8}$$

EXERCISE 4.7

Convert the common fraction are decimal fraction.

$$\begin{array}{r}
 2 \quad \frac{3}{25} \quad \text{R.W} \\
 \text{Sol: } \frac{3}{25} \quad \begin{array}{r}
 0.12 \\
 25 \overline{)30} \\
 -25 \\
 \hline
 50 \\
 \hline
 50 \\
 \hline
 00
 \end{array} \\
 = \quad 0.12 \quad \text{Ans:}
 \end{array}$$

3. $\frac{3}{4}$ R.W
 Sol: $\frac{3}{4}$
 = 0.75 Ans:

$$\begin{array}{r} 0.75 \\ 4 \overline{)30} \\ -28 \\ \hline 20 \\ -20 \\ \hline 00 \end{array}$$

5. $\frac{3}{8}$ R.W
 Sol: $\frac{3}{8}$
 = 0.375 Ans:

$$\begin{array}{r} 0.375 \\ 4 \overline{)30} \\ -24 \\ \hline 60 \\ -56 \\ \hline 40 \\ -40 \\ \hline 00 \end{array}$$

7. $\frac{5}{3}$ R.W
 Sol: $\frac{5}{3}$
 = 1.66 Ans:

$$\begin{array}{r} 0.166 \\ 3 \overline{)15} \\ -9 \\ \hline 20 \\ -18 \\ \hline 20 \\ -18 \\ \hline 02 \end{array}$$

4. $\frac{17}{5}$ R.W
 Sol: $\frac{17}{5}$
 = 3.4 Ans:

$$\begin{array}{r} 3.4 \\ 5 \overline{)17} \\ -15 \\ \hline 20 \\ -20 \\ \hline 00 \end{array}$$

6. $\frac{5}{16}$ R.W
 Sol: $\frac{5}{16}$
 = 0.3125 Ans:

$$\begin{array}{r} 0.3125 \\ 4 \overline{)50} \\ -48 \\ \hline 20 \\ -16 \\ \hline 40 \\ -32 \\ \hline 80 \\ -80 \\ \hline 00 \end{array}$$

8. $\frac{15}{7}$ R.W
 Sol: $\frac{15}{7}$
 = 2.142 Ans:

$$\begin{array}{r} 2.142 \\ 7 \overline{)15} \\ -14 \\ \hline 10 \\ -7 \\ \hline 30 \\ -28 \\ \hline 20 \\ -14 \\ \hline 06 \end{array}$$

9. $\frac{45}{13}$ R.W
 Sol: $\frac{45}{13}$
 = 3.461 Ans:

$$\begin{array}{r} 3.461 \\ 13 \overline{)45} \\ -39 \\ \hline 60 \\ -52 \\ \hline 80 \\ -78 \\ \hline 20 \\ -13 \\ \hline 07 \end{array}$$

11. $\frac{5}{8}$ R.W
 Sol: $\frac{5}{8}$
 = 0.625 Ans:

$$\begin{array}{r} 0.625 \\ 8 \overline{)50} \\ -48 \\ \hline 20 \\ -16 \\ \hline 40 \\ -40 \\ \hline 00 \end{array}$$

13. $\frac{23}{25}$ R.W
 Sol: $\frac{23}{25}$
 = 0.92 Ans:

$$\begin{array}{r} 0.92 \\ 25 \overline{)230} \\ -225 \\ \hline 50 \\ -50 \\ \hline 00 \end{array}$$

10. $\frac{125}{8}$ R.W
 Sol: $\frac{125}{8}$
 = 15.625 Ans:

$$\begin{array}{r} 15.625 \\ 8 \overline{)125} \\ -8 \\ \hline 45 \\ -40 \\ \hline 50 \\ -48 \\ \hline 20 \\ -16 \\ \hline 40 \\ -40 \\ \hline 00 \end{array}$$

12. $\frac{17}{20}$ R.W
 Sol: $\frac{17}{20}$
 = 0.85 Ans:

$$\begin{array}{r} 0.85 \\ 20 \overline{)170} \\ -160 \\ \hline 100 \\ -100 \\ \hline 000 \end{array}$$

14. $\frac{11}{16}$ R.W
 Sol: $\frac{11}{16}$
 = 0.685 Ans:

$$\begin{array}{r} 0.6875 \\ 16 \overline{)110} \\ -96 \\ \hline 140 \\ -128 \\ \hline 120 \\ -112 \\ \hline 80 \\ -80 \\ \hline 00 \end{array}$$

15 $\frac{5}{12}$

R.W

Sol: $\frac{5}{12}$

= 0.4166 Ans:

$$12 \overline{)0.4166}$$

$$\begin{array}{r} 50 \\ -48 \\ \hline 20 \\ -12 \\ \hline 80 \\ -72 \\ \hline 80 \\ -72 \\ \hline 08 \end{array}$$

16 $\frac{24}{18}$

R.W

Sol: $\frac{24}{18}$

= 1.33 Ans:

$$18 \overline{)24}$$

$$\begin{array}{r} 60 \\ -54 \\ \hline 60 \\ -54 \\ \hline 04 \end{array}$$

17 $\frac{21}{11}$

R.W

Sol: $\frac{21}{11}$

= 1.90 Ans:

$$18 \overline{)1.90}$$

$$\begin{array}{r} 21 \\ -11 \\ \hline 100 \\ -99 \\ \hline 01 \end{array}$$

18 $\frac{5}{17}$

R.W

Sol: $\frac{5}{17}$

= 0.2941 Ans:

$$17 \overline{)0.2941}$$

$$\begin{array}{r} 50 \\ -34 \\ \hline 160 \\ -153 \\ \hline 70 \\ -68 \\ \hline 20 \\ -17 \\ \hline 03 \end{array}$$

Convert the decimal fraction into common fraction:

Example: i) 0.468 ii) 0.82 iii) 0.525 iv) 0.027

Solution: i) 0.468

$$= \frac{117}{250} \frac{234}{500} \frac{468}{1000}$$

$$= \frac{117}{250}$$

Solution: iii) 0.525

$$= \frac{21}{40} \frac{105}{200} \frac{525}{1000}$$

$$= \frac{21}{40}$$

Solution: ii) 0.82

$$= \frac{41}{50} \frac{82}{100}$$

$$= \frac{41}{50}$$

Solution: iv) 0.027

$$= \frac{27}{1000}$$

EXERCISE 4.8

Q.1: Convert the decimal factors into common fractions.

1) 0.7

Sol: $\frac{7}{10}$ Ans:

2) 0.0036

$$= \frac{36}{10000} \frac{18}{5000}$$

$$= \frac{18}{5000} \frac{9}{2500}$$

Ans:

3) 0.00063

Sol: $\frac{63}{100000}$ Ans:

4) 0.05

$$= \frac{5}{100} \frac{1}{20}$$

Ans:

5) 0.456

Sol: $\frac{456}{1000}$

$$= \frac{228}{500}$$

Ans:

R.W

$$= \frac{2414}{500} \frac{1207}{2414} \frac{1207}{290} \frac{14}{14} \frac{-14}{00}$$

Ans:

7) 0.029

Sol: $\frac{29}{1000}$ Ans:

8) 0.24

$$= \frac{24}{100} \frac{12}{50}$$

$$= \frac{12}{50} \frac{6}{25}$$

Ans:

9 2.46

$$\text{Sol: } \frac{246}{100} \frac{123}{50}$$

$$= \frac{123}{50} \quad \text{Ans:}$$

11 0.075

$$\text{Sol: } \frac{75}{100} \frac{15}{20}$$

$$= \frac{15}{20} \frac{3}{4}$$

$$= \frac{3}{4} \quad \text{Ans:}$$

13 8.48

$$\text{Sol: } \frac{848}{100} \frac{424}{50}$$

$$= \frac{424}{50} \frac{212}{25}$$

$$= \frac{212}{25} \quad \text{Ans:}$$

15 0.15

$$\text{Sol: } \frac{15}{100} \frac{3}{20}$$

$$= \frac{3}{20} \quad \text{Ans:}$$

10 75.55

$$\text{Sol: } \frac{7555}{100} \frac{1511}{20}$$

$$= \frac{1511}{20} \quad \text{Ans:}$$

12 1.124

$$\text{Sol: } \frac{1124}{1000} \frac{562}{500}$$

$$= \frac{562}{500} \frac{281}{250}$$

$$= \frac{281}{250} \quad \text{Ans:}$$

14 9.546

$$\text{Sol: } \frac{9546}{1000} \frac{4773}{500}$$

$$= \frac{4773}{500} \quad \text{Ans:}$$

16 2.145

$$\text{Sol: } \frac{2145}{1000} \frac{429}{200}$$

$$= \frac{429}{200} \quad \text{Ans:}$$

Solution of daily life problems on the base of decimal fraction:

Example: Alia bought 7.75 meter cloth she used 3.65m from it, How much cloth is remainder.

$$\begin{array}{rcl} \text{Solution:} & \text{Total cloth} & = 7.75 \text{ Meters} \\ & \text{Used cloth} & = - 3.65 \text{ Meters} \\ & \hline & \text{Remaining} & = 4.10 \text{ Meters} \end{array}$$

EXERCISE 4.9

1 A car covers a distance of 18.5 km per liter. Tell that 7.3 liter of petrol of 7.3 liters of petrol is filled in that car. How much distance it will cover.

Sol:

A car covers a distance of 18.5 km per liter.
7.3 liters of petrol is filled in that car
Distance covers by a car in 7.3 liters.

$$\begin{array}{r} 18.5 \\ 7.3 \\ \hline 555 \\ 1295x \\ \hline 135.05 \end{array} \quad \text{Ans:}$$

2 The cost of 1 kg potato is 18.75 then find the cost of 9 kilo Potatoes.

Sol:

The cost of 1 kg potato is 18.75.
The cost of 9 kg potatoes =?

$$\begin{array}{r} 18.75 \\ \times 9 \\ \hline 168.75 \end{array}$$

Ans: The cost of 9 kg of potatoes is 168.75

3 Bano bought 2.450 kg potatoes and 7.750 kg of onions, find her total weight.

Sol:

Bano bought 2.450 kg potatoes
She also bought 7.750 kg of onion.
Total weight = ?

$$\begin{array}{r} 2.450 \\ +7.750 \\ \hline 10.200 \end{array}$$

Ans: The total weight of both vegetables is 10.200kg.

4 The monthly income of Jamal is 35700, He spends 2950.75 rupees in daily life usage find his removed amounts.

Sol:

Monthly income of Jamal = 35700 rupees.
He spends 2950.75 rupees in daily life usage.
Remaining amount = ?

$$\begin{array}{r} 35700.00 \\ -2950.75 \\ \hline 32749.25 \end{array}$$

Ans: The remaining amount is 32749.25

5 The sum of two numbers is 100, If one is 78.01 then find other number.

Sol:

The sum of two numbers = 100
One number is 78.01
Second number = ?

$$\begin{array}{r} 100.00 \\ -78.01 \\ \hline 21.99 \end{array}$$

Ans: The second number is 21.99

6 If a bundle of nine is 287.49 in then find the total meter of wire in 7 bundles.

Sol:

A bundle of wire = 287.49.
Wires in 7 bundles ?

$$\begin{array}{r} 287.49 \\ \times 7 \\ \hline 2012.43 \end{array}$$

Ans: The wire in 7 bundles is 2012.43 metres.

7 The cost of a meter wire is 756.85, then find the cost of 12 meter wire.

Sol:

The cost of one meter wire is 756.85.
The cost of 12 meter wire = ?

$$\begin{array}{r} 756.85 \\ \times 12 \\ \hline 151370 \\ 75685x \\ \hline 9082.20 \end{array}$$

Ans: The cost of 12 meter wire is 9082.20.

8 One Dozen of eggs is 96.50 rupees Find the cost of 3 Dozen eggs.

Sol:

The cost of 1 dozen egg = 96.50 rupees.
The cost of 3 dozen eggs = ?

$$\begin{array}{r} 96.50 \\ \times 3 \\ \hline 289.50 \end{array}$$

Ans: The cost of 3 dozen eggs is 289.50.

PERCENTAGE:

Percentage the fraction with denominator 100 is called percentage for example $\frac{35}{100} = 35\%$ It is derived from Latin language which means from hundred" "Hundred in arabic "Fei" means in "from" and sud means 100 that "Fei & Sud" or Percentage is used for hundred parts it is denoted by "%"

Conversion of percentage into common fraction:

i 25% ii 83%

ii 0.82 83%

$$= \frac{83}{100}$$

i 25%

$$= \frac{1}{4} \frac{25}{100}$$

$$= \frac{1}{4}$$

i 50% ii 25% iii 62%

i 50%

$$= \frac{1}{2} \frac{50}{100}$$

$$= \frac{1}{2}$$

$$= .05$$

ii 25%

$$= \frac{1}{4} \frac{25}{100}$$

$$= \frac{1}{4}$$

$$= 0.25$$

iii 62%

$$= \frac{31}{50} \frac{62}{100}$$

$$= \frac{31}{50}$$

$$= 6.2$$

$$50 \overline{)6.2} \quad \begin{array}{r} 6.2 \\ 30 \\ \hline 100 \\ 100 \\ \hline 0 \end{array}$$

Conversion of common fraction into percentage:

Example: convert $\frac{4}{5}$ into percentage.

Solution: $\frac{4}{5}$

$$= \frac{4}{5} \times \frac{100}{1}^{20}$$

$$= 80\%$$

EXERCISE 5.1

Q.1 Convert into common fraction.

1 35%

Sol: 35%

$$= \frac{35}{100}^{20}$$

$$= \frac{7}{20}$$

2 60%

Sol: 60%

$$= \frac{60}{100}^{50}$$

$$= \frac{15}{25}^{5}$$

$$= \frac{3}{5}$$

3 $45\frac{1}{2}\%$

Sol:

$$= \frac{91}{2}$$

$$= \frac{100}{1}$$

$$= \frac{91}{2} \times \frac{1}{100}$$

$$= \frac{91}{200}$$

4 86%

Sol: 86%

$$= \frac{86}{100}^{50}$$

$$= \frac{43}{50}$$

5 80%

$$\begin{aligned} \text{Sol: } 80\% \\ = \frac{80}{100} \\ = \frac{8}{10} \\ = \frac{4}{5} \end{aligned}$$

7 75%

$$\begin{aligned} \text{Sol: } 75\% \\ = \frac{75}{100} \\ = \frac{15}{20} \\ = \frac{3}{4} \end{aligned}$$

9 56%

$$\begin{aligned} \text{Sol: } 56\% \\ = \frac{56}{100} \\ = \frac{28}{50} \\ = \frac{14}{25} \end{aligned}$$

6 $32\frac{1}{2}\%$

$$\begin{aligned} \text{Sol: } \frac{65}{2} \\ = \frac{65}{100} \\ = \frac{65}{2} \times \frac{1}{100} \\ = \frac{65}{200} = \frac{13}{40} \end{aligned}$$

8 9.5%

$$\begin{aligned} \text{Sol: } 9.5\% \\ = \frac{9.5}{100} \\ = \frac{95}{100} \\ = \frac{95}{10} \times \frac{1}{100} \\ = \frac{95}{1000} \\ = \frac{19}{200} \end{aligned}$$

10 62%

$$\begin{aligned} \text{Sol: } 62\% \\ = \frac{62}{100} \\ = \frac{31}{50} \end{aligned}$$

Q.1 Convert the given percentage into decimal fraction.

1 64%

$$\begin{aligned} \text{Sol: } 64\% \\ = \frac{64}{100} \\ = 0.64 \end{aligned}$$

3 125%

$$\begin{aligned} \text{Sol: } 125\% \\ = \frac{125}{100} \\ = 1.25 \end{aligned}$$

5 $37\frac{1}{2}\%$

$$\begin{aligned} \text{Sol: } \frac{75}{2} \\ = \frac{75}{2} \times \frac{1}{100} \\ = \frac{75}{200} = \frac{3}{4} \\ = 0.75 \end{aligned}$$

7 68%

$$\begin{aligned} \text{Sol: } 68\% \\ = \frac{68}{100} \\ = 0.68 \end{aligned}$$

2 105%

$$\begin{aligned} \text{Sol: } 105\% \\ = \frac{105}{100} \\ = 1.05 \end{aligned}$$

4 23%

$$\begin{aligned} \text{Sol: } 23\% \\ = \frac{23}{100} \\ = 0.23 \end{aligned}$$

6 65%

$$\begin{aligned} \text{Sol: } 65\% \\ = \frac{65}{100} \\ = 0.65 \end{aligned}$$

8 115%

$$\begin{aligned} \text{Sol: } 115\% \\ = \frac{115}{100} \\ = 1.15 \end{aligned}$$

1 64%

$$\begin{aligned} \text{Sol: } 0.64 \\ 100 \overline{)640} \\ -600 \\ \hline 40 \\ = 0.64 \end{aligned}$$

2 105%

$$\begin{aligned} \text{Sol: } 1.05 \\ 100 \overline{)105} \\ -100 \\ \hline 500 \\ = 1.05 \end{aligned}$$

3 125%

$$\begin{aligned} \text{Sol: } 1.25 \\ 100 \overline{)125} \\ -100 \\ \hline 250 \\ -200 \\ \hline 500 \\ -500 \\ \hline 000 \\ = 1.25 \end{aligned}$$

4 23%

$$\begin{aligned} \text{Sol: } 0.23 \\ 100 \overline{)230} \\ -200 \\ \hline 300 \\ -300 \\ \hline 000 \\ = 0.23 \end{aligned}$$

5 $37\frac{1}{2}\%$

$$\begin{aligned} \text{Sol: } \frac{75}{2} \\ = \frac{75}{2} \times \frac{1}{100} \\ = \frac{75}{200} = \frac{3}{4} \\ = 0.75 \end{aligned}$$

6 65%

$$\begin{aligned} \text{Sol: } 0.65 \\ 100 \overline{)650} \\ -600 \\ \hline 500 \\ -500 \\ \hline 000 \\ = 0.65 \end{aligned}$$

7 68%

$$\begin{aligned} \text{Sol: } 0.68 \\ 100 \overline{)680} \\ -600 \\ \hline 800 \\ -800 \\ \hline 000 \\ = 0.68 \end{aligned}$$

8 115%

$$\begin{aligned} \text{Sol: } 1.15 \\ 100 \overline{)115} \\ -100 \\ \hline 150 \\ -100 \\ \hline 500 \\ -500 \\ \hline 000 \\ = 1.15 \end{aligned}$$

9 205% R.W

Sol: 205% $100 \left[\begin{array}{r} 2.5 \\ 205 \\ -200 \\ \hline 500 \\ -500 \\ \hline 000 \end{array} \right]$

$= \frac{205}{100}$

$= 2.5$ Ans:

10 $40\frac{1}{2}\%$

Sol: $\frac{81}{2}$

$= \frac{100}{1}$

$= \frac{81}{2} \times \frac{1}{100}$

$= \frac{81}{200} 0.4505$ Ans:

Q.3. Convert the given fraction into percentage.

1 $\frac{3}{4}$ R.W

Sol: $\frac{3}{4} \times 100$ $4 \left[\begin{array}{r} 25 \\ 100 \\ -8 \\ \hline 20 \\ -20 \\ \hline 00 \\ 25 \\ \times 3 \\ \hline 75 \end{array} \right]$

$= 75\%$

2 $\frac{8}{3}$ R.W

Sol: $\frac{8}{3} \times 100$ $3 \left[\begin{array}{r} 266.66 \\ 800 \\ -6 \\ \hline 20 \\ -18 \\ \hline 20 \\ -18 \\ \hline 20 \\ -18 \\ \hline 02 \end{array} \right]$

$= 266.66\%$

3 $\frac{7}{8}$ R.W

Sol: $\frac{7}{8} \times 100$ $2 \left[\begin{array}{r} 87.5 \\ 175 \\ -16 \\ \hline 15 \\ -14 \\ \hline 10 \\ -10 \\ \hline 00 \end{array} \right]$

$= \frac{7 \times 25}{2}$

$= \frac{175}{2}$

$= 87.5\%$

4 $\frac{3}{8}$ R.W

Sol: $\frac{3}{8} \times 100$ $2 \left[\begin{array}{r} 37.5 \\ 75 \\ -6 \\ \hline 15 \\ -14 \\ \hline 10 \\ -10 \\ \hline 00 \end{array} \right]$

$= \frac{300}{8}$

$= \frac{150}{4}$

$= \frac{75}{2}$

$= 37.5\%$

5 $\frac{4}{25}$ R.W

Sol: $\frac{4}{25} \times 100$ $25 \left[\begin{array}{r} 100 \\ -100 \\ \hline 000 \\ 4 \\ \times 4 \\ \hline 16 \end{array} \right]$

$= 4 \times 4$

$= 16\%$

6 $\frac{19}{50}$ R.W

Sol: $\frac{19}{50} \times 100$ $50 \left[\begin{array}{r} 100 \\ -50 \\ \hline 400 \\ -400 \\ \hline 000 \end{array} \right]$

$= \frac{19}{2}$

$= 38\%$

7 $1\frac{2}{5}$

Sol: $\frac{7}{5} \times 100$

$= 140\%$

8 $\frac{5}{12}$ R.W

Sol: $\frac{5}{12} \times 100$ $3 \left[\begin{array}{r} 41.66 \\ 125 \\ -12 \\ \hline 5 \\ 250 \\ -12 \\ \hline 3 \\ 125 \\ -12 \\ \hline 3 \end{array} \right]$

$= \frac{250}{3}$

$= 41.66\%$

9 $\frac{21}{40}$ R.W

Sol: $\frac{21}{40} \times 100$ $2 \left[\begin{array}{r} 52.5 \\ 105 \\ -104 \\ \hline 10 \\ -10 \\ \hline 00 \end{array} \right]$

$= \frac{105}{2}$

$= 52.5\%$

10 $\frac{8}{9}$ R.W

Sol: $\frac{8}{9} \times 100$ $9 \left[\begin{array}{r} 88.88 \\ 800 \\ -72 \\ \hline 80 \\ -72 \\ \hline 80 \\ -72 \\ \hline 08 \end{array} \right]$

$= \frac{800}{9}$

$= 88.88\%$

11 $\frac{13}{20}$ R.W

Sol: $\frac{13}{20} \times 100$ $20 \left[\begin{array}{r} 5 \\ 100 \\ -100 \\ \hline 000 \end{array} \right]$

$= 13 \times 5$

$= 65\%$

12) $\frac{1}{5}$
 Sol: $\frac{1}{5} \times 100 = 20$ %

R.W

$$\begin{array}{r} 20 \\ 5 \overline{)100} \\ -100 \\ \hline 000 \end{array}$$

14) $\frac{7}{9}$
 Sol: $\frac{7}{9} \times 100 = 77.7$ %

R.W

$$\begin{array}{r} 77.7 \\ 90 \overline{)700} \\ -63 \\ \hline 70 \\ -63 \\ \hline 70 \\ -63 \\ \hline 00 \end{array}$$

13) $\frac{15}{4}$
 Sol: $\frac{15}{4} \times 100 = 375$ %

R.W

$$\begin{array}{r} 25 \\ 4 \overline{)100} \\ -8 \\ \hline 20 \\ -20 \\ \hline 00 \end{array}$$

15) $\frac{16}{21}$
 Sol: $\frac{16}{21} \times 100 = 76.19$ %

R.W

$$\begin{array}{r} 76.19 \\ 21 \overline{)1600} \\ -147 \\ \hline 130 \\ -126 \\ \hline 40 \\ -21 \\ \hline 190 \\ -189 \\ \hline 1 \end{array}$$

DISTANCE, TIME AND TEMPERATURE:

Distance:

We have learnt about length. The bigger unit of length is kilometer the table of least units of length is under.

$$\begin{array}{lll} 1 \text{ Centimeter} & = & 10 \text{ Millimeter} \\ 1 \text{ Meter} & = & 100 \text{ Centimeter} \\ 1 \text{ Kilometer} & = & 1000 \text{ Meters} \end{array}$$

Important Information

- Meter is divided by 1000 to convert into kilometer.
- Centimeter is divided by 100 to convert into meter.
- Millimeter is divided by 10 to convert into centimeter.

Remember These

- When we convert the bigger unit into lower unit then bigger unit is multiplied with lower unit.
- When we convert lower unit into bigger unit then lower unit is divided by bigger unit.

Measurement and addition of Distance

Example: Add 15.35 cm with 45.19 m

Solution:

$$\begin{array}{r} \text{Centimeter} \quad \text{Millimeter} \\ 15 \quad \text{---} \quad 35 \\ + 45 \quad \text{---} \quad 19 \\ \hline 60 \quad \text{---} \quad 54 \end{array}$$

Then $15.35 \text{ cm} + 45.19 \text{ cm} = 60.54 \text{ cm}$

Example: Add 52.60 km with 13.26 km.

$$\begin{array}{r} \text{Kilometer} \quad \text{Meters} \\ 52 \quad \text{---} \quad 60 \\ + 13 \quad \text{---} \quad 26 \\ \hline 65 \quad \text{---} \quad 86 \end{array}$$

Then $52.60 \text{ km} + 13.26 \text{ km} = 65.86 \text{ km}$.

EXERCISE 6.1

Q.1: Add the following:

1 16km, 360m + 27km, 350m

$$\begin{array}{r} \text{Sol: } 16 \text{ km, } 360 \text{ m} \\ + 27 \text{ km, } 350 \text{ m} \\ \hline 43 \text{ km, } 710 \text{ m} \end{array}$$

2 52km, 236m + 18km, 443m

$$\begin{array}{r} \text{Sol: } 52 \text{ km, } 236 \text{ m} \\ + 18 \text{ km, } 443 \text{ m} \\ \hline 70 \text{ km, } 679 \text{ m} \end{array}$$

3 35km, 78m + 13km, 53m

$$\begin{array}{r} \text{Sol: } 35 \text{ km, } 78 \text{ m} \\ + 13 \text{ km, } 53 \text{ m} \\ \hline 48 \text{ km, } 131 \text{ m} \end{array}$$

4 39km, 37m + 14km, 64m

$$\begin{array}{r} \text{Sol: } 39 \text{ km, } 37 \text{ m} \\ + 14 \text{ km, } 64 \text{ m} \\ \hline 53 \text{ km, } 101 \text{ m} \end{array}$$

5 27km, 63m + 41km, 23m

$$\begin{array}{r} \text{Sol: } 27 \text{ km, } 63 \text{ m} \\ + 41 \text{ km, } 23 \text{ m} \\ \hline 68 \text{ km, } 86 \text{ m} \end{array}$$

6 96km, 64m + 93km, 57m

$$\begin{array}{r} \text{Sol: } 96 \text{ km, } 64 \text{ m} \\ + 93 \text{ km, } 57 \text{ m} \\ \hline 189 \text{ km, } 121 \text{ m} \end{array}$$

7 74km, 23m + 25km, 44m

$$\begin{array}{r} \text{Sol: } 74 \text{ km, } 23 \text{ m} \\ + 25 \text{ km, } 44 \text{ m} \\ \hline 99 \text{ km, } 67 \text{ m} \end{array}$$

8 37km, 92m + 78km, 24m

$$\begin{array}{r} \text{Sol: } 37 \text{ km, } 92 \text{ m} \\ + 78 \text{ km, } 24 \text{ m} \\ \hline 115 \text{ km, } 116 \text{ m} \end{array}$$

Subtraction of measurement of distance:

Example: Subtract 16.143 km from 52.236 km

Solution: Kilometer ————— Millimeter

$$\begin{array}{r} 52 \quad \quad \quad 236 \\ - 16 \quad \quad \quad 143 \\ \hline 36 \quad \quad \quad 093 \end{array}$$

Then $52.236 \text{ km} - 16.143 \text{ km} = 36.093 \text{ km}$.

Example: Subtract 36.596 to 10.107 km.

Solution: Kilometer ————— Millimeter

$$\begin{array}{r} 36 \quad \quad \quad 596 \\ - 10 \quad \quad \quad 107 \\ \hline 26 \quad \quad \quad 489 \end{array}$$

Then $36.596 \text{ km} - 10.107 \text{ m} = 26.489 \text{ km}$.

EXERCISE 6.2

Q.1: Subtract:

1 215km, 48m from 324km, 75m 2 631.74km - 480.39 km

$$\begin{array}{r} \text{Sol: } 324 \text{ km, } 75 \text{ m} \\ - 215 \text{ km, } 48 \text{ m} \\ \hline 109 \text{ km, } 27 \text{ m} \end{array}$$

$$\begin{array}{r} \text{Sol: } 631.74 \text{ km} \\ - 480.39 \text{ km} \\ \hline 151.35 \text{ km} \end{array}$$

3 480km, 39m from 631km, 74m 4 6m, 8dm, 5cm from 9m, 5dm, 10 cm

$$\begin{array}{r} \text{Sol: } 631 \text{ km, } 74 \text{ m} \\ - 480 \text{ km, } 39 \text{ m} \\ \hline 151 \text{ km, } 35 \text{ m} \end{array}$$

$$\begin{array}{r} \text{Sol: } 9 \text{ m, } 8 \text{ dm, } 5 \text{ cm} \\ - 6 \text{ m, } 8 \text{ dm, } 5 \text{ cm} \\ \hline 2 \text{ m, } 7 \text{ dm, } 5 \text{ cm} \end{array}$$

5 18km, 26m from 20km, 18m

$$\begin{array}{r} 20 \text{ km, } 18 \text{ m} \\ -18 \text{ km, } 26 \text{ m} \\ \hline 1 \text{ km, } 992 \text{ m} \end{array}$$

7 28m, 8m from 35km, 80m

$$\begin{array}{r} 35 \text{ km, } 80 \text{ m} \\ -28 \text{ km, } 83 \text{ m} \\ \hline 6 \text{ km, } 997 \text{ m} \end{array}$$

6 18km, 25m from 43km, 9m

$$\begin{array}{r} 43 \text{ km, } 9 \text{ m} \\ -18 \text{ km, } 25 \text{ m} \\ \hline 24 \text{ km, } 984 \text{ m} \end{array}$$

8 62km, 35m from 71km, 65m

$$\begin{array}{r} 71 \text{ km, } 65 \text{ m} \\ -62 \text{ km, } 35 \text{ m} \\ \hline 9 \text{ km, } 30 \text{ m} \end{array}$$

The subtraction and addition of distance in daily life usage:

Example: A rope is 8.80 long from it 3.35 long piece is cut. Find the length of remaining rope.

Meter	—	Centimeter
8	—	80
- 3	—	35
—	—	—
5	—	45

Then $8.80 \text{ m} - 3.35 \text{ m} = 5.45$

EXERCISE 6.3

Q.1: Nida bought 6m, 35 cm cloth and her sister saba bought 5m, 75 cm cloth. Find the total purchased cloth.

$$\begin{array}{r} 6 \text{ m, } 35 \text{ cm} \\ + 5 \text{ m, } 75 \text{ cm} \\ \hline 12 \text{ m, } 10 \text{ cm} \end{array}$$

Ans: The total length of purchased clothes is 12 m and 10 cm.

Q.2 A car covered a distance of 310km, 67m on Sunday and 275 kilometer covered on Monday. Tell that how much distance is covered on both days?

$$\begin{array}{r} 310 \text{ km, } 67 \text{ m} \\ + 275 \text{ km, } 00 \text{ m} \\ \hline 585 \text{ km, } 67 \text{ m} \end{array}$$

Ans: The total distance covered on Sunday and Monday is 585 km and 67 m.

Q.3 The house of Hasan is far away from school about 6 km, 300 m. While Adil's house is far away from school about 8km. Find whose house is faraway from school and How much?

$$\begin{array}{r} 8 \text{ km, } 300 \text{ m} \\ - 6 \text{ km, } 300 \text{ m} \\ \hline 1 \text{ km, } 700 \text{ m} \end{array}$$

Ans: Adil's house is far away school and it is about 1 km and 700 m.

Q.4 Aisha bought 2 m, 37 cm 75cm of cloth took her sister. How much cloth is remaining at Aisha?

$$\begin{array}{r} 2 \text{ m, } 37 \text{ cm} \\ - 0 \text{ m, } 75 \text{ cm} \\ \hline 1 \text{ m, } 62 \text{ cm} \end{array}$$

Ans: Aisha has remaining clothes about 1m and 62 cm.

Q.5 Adil bought a bamboo of 6m, 10 cm long. He joined another piece of bamboo about 5 m 38 m long to make the ladder. Find the total length of the bamboo.

$$\begin{array}{r} 6 \text{ m, } 10 \text{ cm} \\ + 5 \text{ m, } 38 \text{ cm} \\ \hline 11 \text{ m, } 48 \text{ cm} \end{array}$$

Ans: The total length of bamboo is 11m and 48 cm.

TIME:

We have learnt about unit of time in previous classes. The unit of time is second. The table of units is under.

60 Minutes	=	1 Hours	60 Second	=	1 Minute
1 Week	=	7 Days	1 Day	=	24 Hours
1 Year	=	12 Month	1 Month	=	4 Weeks
			1 Year	=	365 Days

Conversion of units of time:

Conversion of hours into minute:

Example: Convert the 2 hours and 35 minutes into minutes.

$$\begin{aligned}
 1 \text{ Hour} &= 60 \text{ Minutes} \\
 2 \text{ Hours} &= 60 \times 2 = 120 \text{ Minutes} \\
 2 \text{ Hours } 35 \text{ Minutes} &= (35 + 120) \text{ Minutes} \\
 &= 155 \text{ Minutes}
 \end{aligned}$$

To convert the minutes into hours:

Example: Convert 612 minutes into hours

Solution:

$$\begin{aligned}
 60 \text{ Minutes} &= 1 \text{ Hour} \\
 612 \text{ Minutes} &= \frac{612}{60} \text{ Hours} \\
 &= 10 \text{ Hours and } 12 \text{ minutes}
 \end{aligned}$$

To convert the minutes into seconds:

Example: Convert 7 minutes and 35 seconds into seconds.

$$60 \text{ seconds} = 1 \text{ minute}$$

$$7 \text{ Minutes} = 60 \times 7 = 420 \text{ Second}$$

$$\begin{aligned}
 7 \text{ Minutes } 35 \text{ Second} &= (35 + 420) \text{ Second} \\
 &= 455 \text{ Second}
 \end{aligned}$$

Example: Convert 660 seconds into minutes

Solution:

$$\begin{aligned}
 60 \text{ Second} &= 1 \text{ Minute} \\
 660 \text{ Second} &= \frac{660}{60} \text{ Minutes} \\
 &= 11 \text{ Minutes}
 \end{aligned}$$

To convert the months into years:

Example: Convert 48 months into years

Solution:

$$\begin{aligned}
 12 \text{ Months} &= 1 \text{ Year} \\
 48 \text{ Months} &= \frac{48}{12} \text{ Years} \\
 &= 4 \text{ Years}
 \end{aligned}$$

To make days from one month:

Example: To make the days of 18 months and 25 days.

Solution:

$$\begin{aligned}
 1 \text{ Months} &= 30 \text{ Days} \\
 18 \text{ Months} &= 30 \times 18 = 540 \text{ Days} \\
 18 \text{ Months } 25 \text{ Days} &= (25 + 540) \text{ Days} \\
 &= 565 \text{ Days}
 \end{aligned}$$

Months from days:

Example: Make months of 150 days

$$\begin{array}{rcl} 30 \text{ Days} & = & 1 \text{ Month} \\ 150 \text{ Days} & = & \frac{150}{30}^5 \text{ Months} \\ & = & 5 \text{ Months} \end{array}$$

Days from weeks:

Example: Make days of 14 weeks and 5 days.

Solution:

$$\begin{array}{rcl} 1 \text{ Month} & = & 7 \text{ Days} \\ 14 \text{ Months} & = & (7 \times 14) \text{ Days} \\ & = & 98 \text{ Days} \\ 14 & 5 \text{ Days} & = (5 + 98) \text{ Days} \\ 30 & & = 103 \text{ Days} \end{array}$$

To make weeks from days:

Example: Make weeks from 125.

Solution:

$$\begin{array}{rcl} 7 \text{ Days} & = & 1 \text{ Day} \\ 125 \text{ Days} & = & \frac{125}{7} \\ & = & 17 \text{ Months } 6 \text{ Days} \end{array} \quad \begin{array}{r} 17 \\ \hline 7 \quad \left| \begin{array}{r} 125 \\ 7 \\ \hline 55 \\ 49 \\ \hline 6 \end{array} \right. \end{array}$$

EXERCISE 7.1

Q.1: Convert into minutes.

1 4 Hours

Sol:

We know that 1 hour = 60 minutes

Then:

$$\begin{array}{l} \text{multiply 4 by 60} \\ 4 \times 60 \\ = 240 \text{ minutes} \end{array} \quad \begin{array}{r} 60 \\ \times 4 \\ \hline 240 \end{array}$$

Ans:

2 7 Hours 30 Minutes

Sol: 7 Hours 30 Minutes

$$\begin{array}{l} = 7 \times 60 \\ = 420 \text{ minutes} \end{array}$$

Now add 420 minutes in 30 minutes

$$\begin{array}{r} 420 \text{ minutes} \\ + 30 \text{ minutes} \\ \hline 450 \text{ minutes} \end{array}$$

3 3 Hours 10 Minutes

Sol: 3 Hours 10 Minutes

$$\begin{array}{l} = 3 \times 60 \\ = 180 \text{ minutes} \end{array}$$

Now add 180 minutes in 10 minutes

$$\begin{array}{r} 180 \text{ minutes} \\ + 10 \text{ minutes} \\ \hline 190 \text{ minutes} \end{array}$$

4 8 Hours

Sol:

We know that 1 hour = 60 minutes

R.W

Then:

multiply 8 by 60

60

 8×60 $\times 8$ $= 480 \text{ minutes}$ Ans:480

Q.2: Convert into seconds:

1 10 Minutes

 10×60

600 Seconds Ans:

2 5 Minutes

 5×60

300 Seconds Ans:

3 35 Minutes 10 Seconds

Sol: 35 Minutes 10 Seconds

R.W

 $= 35 \times 60$ $= 2100 \text{ minutes}$

60

 $\times 35$ 300

Now add 2100 minutes in 10 seconds

 $180 \times$ 2100

2100 seconds

 $+10 \text{ seconds}$ 2110 seconds

4 25 Minutes 15 seconds

Sol: 25 Minutes 15 seconds

R.W

 $= 25 \times 60$ $= 1,500 \text{ seconds}$

1500

 $+15$ 1515 Seconds

Now add 1,500 seconds in 15 seconds

Q.3 Convert into hours.

1 675 minutes

11.25

 $= 675 \div 60$

60

675-6075-60150-120300-300000

2 3600 minutes

Sol: 3600 minutes

60

 $= 3600 \div 60$

3600

3600-36000000

3 512 minutes

Sol: 512 minutes

8.53

 $= 512 \div 60$

512

480320300200-18020

4 342 minutes

Sol: 342 minutes

5.7

 $= 342 \div 60$

342

300420420000

5 125 Minutes

$$= 125 \div 60$$

$$= 2.083 \text{ hours}$$

$$2.083 \\ 60 \overline{)125} \\ -120 \\ \hline 500 \\ -480 \\ \hline 200 \\ -180 \\ \hline 20$$

6 270 Minutes

$$= 270 \div 60$$

$$= 4.5 \text{ hours}$$

$$4.5 \\ 60 \overline{)270} \\ -240 \\ \hline 300 \\ -300 \\ \hline 000$$

7 720 Minutes

$$= 720 \div 60$$

$$= 12 \text{ hours}$$

$$12 \\ 60 \overline{)720} \\ -720 \\ \hline 000$$

8 420 Minutes

$$= 420 \div 60$$

$$= 7 \text{ hours}$$

$$7 \\ 60 \overline{)420} \\ -420 \\ \hline 000$$

Q.4 Convert the months into years.

1 87 months

$$= 87 \div 12$$

$$= 7.25 \text{ years}$$

2 54 months

$$= 54 \div 12$$

$$= 4.5 \text{ years}$$

$$= 4 \text{ years and } 60$$

$$= 6 \text{ months}$$

$$4.5 \\ 12 \overline{)87} \\ -84 \\ \hline 30 \\ -24 \\ \hline 60 \\ -60 \\ \hline 00$$

3 13 months

$$= 13 \div 12$$

$$= 1.0833 \text{ years}$$

4 120 months

$$= 120 \div 12$$

$$= 10 \text{ years}$$

$$10 \\ 12 \overline{)120} \\ -120 \\ \hline 000$$

5 75 months

$$= 75 \div 12$$

$$= 6.25 \text{ years}$$

6 21 months

$$= 21 \div 12$$

$$= 1.75 \text{ years}$$

$$1.75 \\ 12 \overline{)21} \\ -12 \\ \hline 90 \\ -84 \\ \hline 60 \\ -60 \\ \hline 00$$

7 128 months

$$\begin{array}{rcl}
 & 10.66 & \\
 = 128 \div 12 & 12 \overline{)128} & \\
 = 10.66 \text{ years} & -120 & \\
 & 80 & \\
 & -72 & \\
 & 80 & \\
 & -72 & \\
 & 08 & \\
 \end{array}$$

8 460 months

$$\begin{array}{rcl}
 & 38.33 & \\
 = 460 \div 12 & 12 \overline{)460} & \\
 = 38.33 \text{ years} & -36 & \\
 & 100 & \\
 & -96 & \\
 & 40 & \\
 & -36 & \\
 & 40 & \\
 & -36 & \\
 & 04 & \\
 \end{array}$$

Q.5. Make the days of.

1 6 weeks

Sol: 6 weeks

We know that 1 week = 7 days

$$= 6 \times 7$$

$$= 42 \text{ Days} \quad \text{Ans:}$$

3 86 weeks

Sol: 86 weeks

We know that 1 week = 7 days

$$= 86 \times 7$$

$$= 602 \text{ days} \quad \text{Ans:}$$

2 12 weeks and 4 days

Sol: 12 weeks and 4 days

$$= 12 \times 7$$

$$= 84$$

Now add 84 and 4

$$\begin{array}{r}
 84 \\
 +4 \\
 \hline
 88
 \end{array} \text{ days}$$

12 weeks and 4 days = 88 days.

4 8 weeks and 3 days

Sol: 8 weeks and 3 days

$$= 8 \times 7$$

$$= 56$$

Now add 56 and 3

$$\begin{array}{r}
 56 \\
 +3 \\
 \hline
 59
 \end{array} \text{ days}$$

8 weeks and 3 days = 59 days.

5 10 weeks and 2 days

Sol: 10 weeks and 2 days

$$= 10 \times 7$$

$$= 70$$

Now add 70 and 2

$$\begin{array}{r}
 70 \\
 +2 \\
 \hline
 72
 \end{array} \text{ days}$$

10 weeks and 2 days = 72 days.

6 45 weeks

Sol: 45 weeks

We know that 1 week = 7 days

$$= 45 \times 7$$

$$= 315 \text{ Days} \quad \text{Ans:}$$

7 2 weeks and 4 days

Sol: 2 weeks and 4 days

$$= 2 \times 7$$

$$= 14$$

Now add 14 and 4 days

$$\begin{array}{r}
 14 \\
 +4 \\
 \hline
 18
 \end{array} \text{ days}$$

8 21 weeks

Sol: 21 weeks

$$= 21 \times 7$$

$$= 147 \text{ days} \quad \text{R.W}$$

$$\begin{array}{r}
 21 \\
 \times 7 \\
 \hline
 147
 \end{array} \text{ days}$$

2 weeks and 4 days = 18 days. Ans: 21 weeks = 147 days

Addition and Subtraction of units of time:

Example: Add 2:40 hours with 4:30 hours.

Hours _____ Minutes

$$\begin{array}{r}
 2 \quad \quad 40 \\
 + 4 \quad \quad 30 \\
 \hline
 \end{array}$$

Here 60 minutes = 1 hour

$$\begin{array}{r}
 + 4 \quad \quad 30 \\
 \hline
 \end{array} \text{ So that 70 minutes = 1 hour and 10 minutes}$$

$$\begin{array}{r}
 7 \quad \quad 10 \\
 \hline
 \end{array}$$

Example: Subtract 43:26 minutes from 60:10 minutes

Hours _____ Minutes

$$\begin{array}{r}
 60 \quad \quad 10 \\
 - 43 \quad \quad 26 \\
 \hline
 \end{array}$$

Here 60 seconds = 1 minute

$$\begin{array}{r}
 - 43 \quad \quad 26 \\
 \hline
 \end{array} \text{ So that 70 seconds = 1 minute + 10 second}$$

$$\begin{array}{r}
 16 \quad \quad 44 \\
 \hline
 \end{array}$$

EXERCISE 7.2

Q.1. Add the following:

1 45 minutes 38 seconds and 30 minutes, 51 seconds.

$$\begin{array}{r} 45 \text{ minutes } 38 \text{ seconds} \\ + 30 \text{ minutes, } 51 \text{ seconds} \\ \hline 76 \text{ minutes, } 29 \text{ seconds} \end{array}$$

2 18 minutes 25 seconds and 29 minutes 39 seconds.

$$\begin{array}{r} 18 \text{ minutes } 25 \text{ seconds} \\ + 29 \text{ minutes, } 39 \text{ seconds} \\ \hline 48 \text{ minutes, } 4 \text{ seconds} \end{array}$$

3 30 hours 55 minutes and 30 hours 37 minutes.

$$\begin{array}{r} 30 \text{ hours } 55 \text{ minutes} \\ + 30 \text{ hours, } 37 \text{ minutes} \\ \hline 61 \text{ hours, } 32 \text{ minutes} \end{array}$$

4 36 hours 48 minutes and 25 hours 35 minutes.

$$\begin{array}{r} 36 \text{ hours } 48 \text{ minutes} \\ + 25 \text{ hours, } 35 \text{ minutes} \\ \hline 62 \text{ hours, } 23 \text{ minutes} \end{array}$$

5 2 hours 52 minutes 15 seconds and 3 hours, 45 minutes 10 seconds

$$\begin{array}{r} 2 \text{ hours } 52 \text{ minutes } 15 \text{ seconds} \\ + 3 \text{ hours, } 45 \text{ minutes } 10 \text{ seconds} \\ \hline 6 \text{ hours, } 37 \text{ minutes } 25 \text{ seconds} \end{array}$$

Q.2. Subtract the following.

1 43 minutes 39 seconds, from 62 minutes

$$\begin{array}{r} 43 \text{ minutes } 39 \text{ seconds} \\ - 62 \text{ minutes, } \\ \hline 19 \text{ minutes, } 39 \text{ seconds} \end{array}$$

2 34 minutes 25 seconds from 40 minutes 20 seconds

$$\begin{array}{r} 40 \text{ minutes } 20 \text{ seconds} \\ - 34 \text{ minutes, } 25 \text{ seconds} \\ \hline 05 \text{ minutes, } 55 \text{ seconds} \end{array}$$

3 12 hours 42 minutes from 20 hours 58

$$\begin{array}{r} 20 \text{ hours, } 58 \text{ min} \\ - 12 \text{ hours, } 42 \text{ min} \\ \hline 8 \text{ hours, } 16 \text{ minutes} \end{array}$$

4 28 hours, 32 minutes from 40 hours, 38 minutes

$$\begin{array}{r} 40 \text{ hours, } 38 \text{ minutes} \\ - 28 \text{ hours, } 32 \text{ minutes} \\ \hline 12 \text{ hours, } 6 \text{ minutes} \end{array}$$

5 2 hours 45 minutes from to 3 hours 40 minutes

$$\begin{array}{r} 3 \text{ hours, } 40 \text{ minutes} \\ - 2 \text{ hours, } 45 \text{ minutes} \\ \hline 0 \text{ hours, } 55 \text{ minutes} \end{array}$$

Addition and subtraction of time in daily life problems:

Example: Amina completes a work of Urdu in 2 hours and 15 minutes and work of Maths in 1 hour and 35 minutes, Find the total time of both works.

Solution:

$$\begin{array}{r} \text{Hours} \quad \text{Minutes} \\ 2 \quad 15 = \text{Urdu work} \\ + 1 \quad 35 = \text{Math work} \\ \hline \text{Total time of work} \quad 3 \quad 50 = 3 \text{ hours and fifty minutes} \end{array}$$

EXERCISE 7.3

Q.1. Adil is 13 years and 6 months. Tell that how much old while his brother is 6 years and 9 months old. Tell how much Umar is smaller than Adil?

Sol:
$$\begin{array}{r} 13 \text{ years, } 6 \text{ months} \\ - 6 \text{ years, } 9 \text{ months} \\ \hline 6 \text{ years, } 9 \text{ months} \end{array}$$

Ans: Umar is 6 year, 9 months smaller than dil.

Q.2: Fatime reaches the school in one hour and 15 minutes while Noor reaches the school in 55 minutes. Find that who reaches late and how much she takes?

Sol:
$$\begin{array}{r} 1 \text{ hours, } 15 \text{ months} \\ - 0 \text{ hours, } 55 \text{ months} \\ \hline 0 \text{ hours, } 20 \text{ months} \end{array}$$

Ans: Fatima reaches late. She reaches 20 minutes late.

Q.3: An aeroplane reaches the Islamabad in 120 minutes while another aeroplane reaches Islamabad in 1 hour and 45 minutes. What is difference in their flight?

Sol:

First convert 120 minutes into hours.

Then: $120 \div 60 = 2$

New,
$$\begin{array}{r} 2 \text{ hours, } 00 \text{ months} \\ - 1 \text{ hours, } 45 \text{ months} \\ \hline 0 \text{ hours, } 15 \text{ months} \end{array}$$

Ans: The difference in the flight is 15 minutes.

Q.4: School will be closed from first June to 14 August due to Summer vacations. In this year school will closed from 23 May to 14 August. How much difference between both holidays.

Sol:

First add the days from 1st June to 14 August.

Then:

$$\begin{aligned} &= 30 + 31 + 14 = 75 \\ &= 9 + 30 + 31 + 14 = 84 \end{aligned}$$

Now add the days from 23 May to 14th August

$$\begin{array}{r} 84 \\ - 75 \\ \hline 09 \end{array}$$

Ans: The difference between both holidays is 9 days.

TEMPERATURE:

Important Information

- Melting point of water is 0°C and Boiling point of water 100°C .
- Scale of temperature is divided into 100 equal parts.
- This scale is named in the honour of Swedish Astronomer Celsius.

Important Information

- Melting point of water is 32°F and Boiling point is 212°F .
- Scale of temperature is divided into 180 equal parts.
- This scale is named in the honour of German scientist Fahrenheit.

Conversion of temperature from Fahrenheit to Celsius :

We subtract 32 from Fahrenheit scale and then multiply by $\frac{5}{9}$ to make Celsius scale

Example: Convert the 68°F into $^{\circ}\text{C}$

Solution:

$$\begin{aligned} \text{First step} &= 68 - 32 = 36 \quad (\text{Subtract } 32^{\circ}\text{ from }^{\circ}\text{F}) \\ \text{Second step} &= \frac{5}{9} \times 36 = 20^{\circ}\text{C} \end{aligned}$$

Example: Convert 35°C into $^{\circ}\text{F}$.

Solution: First step $= 104 - 32 = 72$

$$\text{Second step} = \frac{5}{9} \times 72 = 40^{\circ}\text{C}$$

Conversion of temperature from Celsius into Fahrenheit:

In first step Celsius is multiplied by $\frac{9}{5}$ then 32 is added with it.

Example convert 15°C into $^{\circ}\text{F}$

Solution:

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 15^{\circ} = 27 \\ \text{Second step} &= 27 + 32 \\ &= 59^{\circ}\text{F}\end{aligned}$$

Example: Convert 35°C into $^{\circ}\text{F}$

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 35^{\circ} = 63 \\ \text{Second step} &= 63 + 32 \\ &= 95^{\circ}\text{F}\end{aligned}$$

EXERCISE 8.1

Q.1: Convert into Fahrenheit.

$$\begin{aligned}\text{1} \quad 60^{\circ}\text{C} \\ \text{First step} &= \frac{9}{5} \times 60^{\circ} = 108 \\ &= 9 \times 12 \\ &= 108 \\ \text{Second step} &= 108 + 32 \\ &= 140^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

$$\begin{aligned}\text{2} \quad 140^{\circ}\text{C} \\ \text{First step} &= \frac{9}{5} \times 140^{\circ} = 252 \\ &= 9 \times 28 \\ &= 252 \\ \text{Second step} &= 252 + 32 \\ &= 284^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

3 50°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 50^{\circ} = 90 \\ &= 9 \times 10 \\ &= 90 \\ \text{Second step} &= 90 + 32 \\ &= 122^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

5 45°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 45^{\circ} = 81 \\ &= 9 \times 9 \\ &= 81 \\ \text{Second step} &= 81 + 32 \\ &= 113^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

7 80°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 80^{\circ} = 144 \\ &= 9 \times 16 \\ &= 144 \\ \text{Second step} &= 144 + 32 \\ &= 176^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

4 115°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 115^{\circ} = 207 \\ &= 9 \times 23 \\ &= 207 \\ \text{Second step} &= 207 + 32 \\ &= 239^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

6 35°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 35^{\circ} = 63 \\ &= 9 \times 7 \\ &= 63 \\ \text{Second step} &= 63 + 32 \\ &= 95^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

8 70°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 70^{\circ} = 126 \\ &= 9 \times 14 \\ &= 126 \\ \text{Second step} &= 126 + 32 \\ &= 158^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

9 25°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 25^5 \\ &= 9 \times 5 \\ &= 45\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 45 + 32 \\ &= 77^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

10 65°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 65^{13} \\ &= 9 \times 13 \\ &= 117\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 117 + 32 \\ &= 149^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

11 120°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 120^{24} \\ &= 9 \times 24 \\ &= 216\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 216 + 32 \\ &= 248^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

12 95°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 95^{19} \\ &= 9 \times 19 \\ &= 171\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 171 + 32 \\ &= 203^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

13 210°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 210^{42} \\ &= 9 \times 42 \\ &= 378\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 378 + 32 \\ &= 410^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

14 145°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 145^{29} \\ &= 9 \times 29 \\ &= 261\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 261 + 32 \\ &= 293^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

15 100°C

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 100^{20} \\ &= 9 \times 20 \\ &= 180\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 180 + 32 \\ &= 212^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

ii Convert into Celsius.

1 140°F

$$\text{Sol: } \text{First step} = 140 - 32$$

$$9 \begin{array}{r} 12 \\ \hline 108 \\ -9 \\ \hline 18 \\ -18 \\ \hline 00 \end{array}$$

$$\begin{aligned}\text{Second step} &= \frac{5}{9} \times 108^{12} \\ &= 5 \times 12 \\ &= 60^{\circ}\text{C} \quad \text{Ans:}\end{aligned}$$

2 194°F

$$\text{Sol: } \text{First step} = 194 - 32$$

$$= 162$$

$$\begin{aligned}\text{Second step} &= \frac{5}{9} \times 162^{18} \\ &= 5 \times 18 \\ &= 90^{\circ}\text{C} \quad \text{Ans:}\end{aligned}$$

3 59°F

$$\text{Sol: First step} = 59 - 32$$

$$= 27$$

$$\text{Second step} = \frac{5}{9} \times 27^3$$

$$= 5 \times 3$$

$$= 15^\circ\text{C} \text{ Ans:}$$

4 50°F

$$\text{Sol: First step} = 50 - 32$$

$$= 18$$

$$\text{Second step} = \frac{5}{9} \times 18^2$$

$$= 5 \times 2$$

$$= 10^\circ\text{C} \text{ Ans:}$$

5 230°F

$$\text{Sol: First step} = 230 - 32$$

$$= 198$$

$$\text{Second step} = \frac{5}{9} \times 198^{22}$$

$$= 5 \times 22$$

$$= 110^\circ\text{C} \text{ Ans:}$$

6 167°F

$$\text{Sol: First step} = 167 - 32$$

$$= 135$$

$$\text{Second step} = \frac{5}{9} \times 135^{15}$$

$$= 5 \times 15$$

$$= 75^\circ\text{C} \text{ Ans:}$$

7 176°F

$$\text{Sol: First step} = 176 - 32$$

$$= 144$$

$$\text{Second step} = \frac{5}{9} \times 144^{16}$$

$$= 5 \times 16$$

$$= 80^\circ\text{C} \text{ Ans:}$$

8 104°F

$$\text{Sol: First step} = 104 - 32$$

$$= 72$$

$$\text{Second step} = \frac{5}{9} \times 72^8$$

$$= 5 \times 8$$

$$= 40^\circ\text{C} \text{ Ans:}$$

9 86°F

$$\text{Sol: First step} = 86 - 32$$

$$= 54$$

$$\text{Second step} = \frac{5}{9} \times 54^6$$

$$= 5 \times 6$$

$$= 30^\circ\text{C} \text{ Ans:}$$

10 95°F

$$\text{Sol: First step} = 95 - 32$$

$$= 63$$

$$\text{Second step} = \frac{5}{9} \times 63^7$$

$$= 5 \times 7$$

$$= 35^\circ\text{C} \text{ Ans:}$$

11 77°F

$$\text{Sol: First step} = 77 - 32$$

$$= 45$$

$$\text{Second step} = \frac{5}{9} \times 45^5$$

$$= 5 \times 5$$

$$= 25^\circ\text{C} \text{ Ans:}$$

12 185°F

$$\text{Sol: First step} = 185 - 32$$

$$= 153$$

$$\text{Second step} = \frac{5}{9} \times 153^{17}$$

$$= 5 \times 17$$

$$= 85^\circ\text{C} \text{ Ans:}$$

13 410°F

$$\text{Sol: First step} = 410 - 32$$

$$= 378$$

$$\text{Second step} = \frac{5}{9} \times 378^{42}$$

$$= 5 \times 42$$

$$= 210^\circ\text{C} \text{ Ans:}$$

14 158°F

$$\text{Sol: First step} = 158 - 32$$

$$= 126$$

$$\text{Second step} = \frac{5}{9} \times 126^{14}$$

$$= 5 \times 14$$

$$= 70^\circ\text{C} \text{ Ans:}$$

15 320°F

$$\begin{aligned}\text{Sol: First step} &= 320 - 32 \\ &= 288\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 288^{32} \\ &= 5 \times 32 \\ &= 160^{\circ}\text{c} \text{ Ans:}\end{aligned}$$

17 68°F

$$\begin{aligned}\text{Sol: First step} &= 68 - 32 \\ &= 36\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 36^4 \\ &= 5 \times 4 \\ &= 20^{\circ}\text{c} \text{ Ans:}\end{aligned}$$

19 239°F

$$\begin{aligned}\text{Sol: First step} &= 239 - 32 \\ &= 207\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 207^{23} \\ &= 5 \times 23 \\ &= 115^{\circ}\text{c} \text{ Ans:}\end{aligned}$$

16 122°F

$$\begin{aligned}\text{Sol: First step} &= 122 - 32 \\ &= 90\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 90^{10} \\ &= 5 \times 10 \\ &= 50^{\circ}\text{c} \text{ Ans:}\end{aligned}$$

18 437°F

$$\begin{aligned}\text{Sol: First step} &= 437 - 32 \\ &= 405\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 405^{45} \\ &= 5 \times 45 \\ &= 225^{\circ}\text{c} \text{ Ans:}\end{aligned}$$

20 194°F

$$\begin{aligned}\text{Sol: First step} &= 194 - 32 \\ &= 162\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 162^{18} \\ &= 5 \times 18 \\ &= 90^{\circ}\text{c} \text{ Ans:}\end{aligned}$$

Changing of units of temperature and to solve daily life problems bases on addition and subtraction:

Example: One day temperature of Jacobabad was 45°C . Tell that how much it was in Fahrenheit.

$$\begin{aligned}&= 45^{\circ}\text{ F} \\ \text{First step} &= \frac{9}{5} \times 45^9 \\ \text{Second step} &= 81 + 32 \\ &= 113^{\circ}\text{ F} \\ &= 113^{\circ}\text{ F} = 45^{\circ}\text{C}\end{aligned}$$

→ EXERCISE 8.2 →

Q.1: The temperature of Larkana is 194°F . Tell that how much is in $^{\circ}\text{C}$.

$$\begin{aligned}\text{Sol: } 194^{\circ}\text{F} \\ \text{First step} &= 194 - 32 \\ &= 162 \\ \text{Second step} &= \frac{9}{5} \times 162^{18} \\ &= 5 \times 183 \\ &= 90^{\circ}\text{c} \text{ Ans:}\end{aligned}$$

Q.2: The hottest temperature of Badin is 145°F and lowest temperature is 35°C . How much difference between two temperature in Fahrenheit?

Sol: 35°F

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 35^{\circ}\text{C} \\ &= 9 \times 7 \\ &= 63\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 63 + 32 \\ &= 85^{\circ}\text{F}\end{aligned}$$

New subtract 85°F from 145°F

$$\begin{array}{r} 145^{\circ}\text{F} \\ - 85^{\circ}\text{F} \\ \hline 60^{\circ}\text{F} \end{array}$$

Ans: The difference between two temperature in Fahrenheit is 60°F

Q.3: If temperature is 25°C . How much it will on $^{\circ}\text{F}$.

Sol: 25°F

$$\begin{aligned}\text{First step} &= \frac{9}{5} \times 25^{\circ}\text{C} \\ &= 9 \times 5 \\ &= 45\end{aligned}$$

$$\begin{aligned}\text{Second step} &= 45 + 32 \\ &= 77^{\circ}\text{F} \quad \text{Ans:}\end{aligned}$$

Q.4: Nazia has fever at 176°F , How much will be in $^{\circ}\text{C}$.

Sol: 176°F

$$\begin{aligned}\text{First step} &= 176 - 32 \\ &= 144\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{5}{9} \times 144^{\circ}\text{F} \\ &= 5 \times 16 \\ &= 80^{\circ}\text{C} \quad \text{Ans:}\end{aligned}$$

Q.5: The hottest temperature of Rohri was 176°F while temperature of Sukkur was 113°F . Who setemperature was greater? Explain by Celsius.

Sol: 176°F

$$\begin{aligned}\text{First step} &= 176 - 32 \\ &= 144\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 144^{\circ}\text{F} \\ &= 5 \times 16 \\ &= 80^{\circ}\text{C} \quad \text{Ans:}\end{aligned}$$

Sol: 113°F

$$\begin{aligned}\text{First step} &= 113 - 32 \\ &= 81\end{aligned}$$

$$\begin{aligned}\text{Second step} &= \frac{9}{5} \times 81^{\circ}\text{F} \\ &= 5 \times 9 \\ &= 45^{\circ}\text{C} \quad \text{Ans:}\end{aligned}$$

Ans: The temperature of Rohri is hottest than temperature of Rohri.

RULES OF UNITS:

We use any rule to find the value of anything in our daily life. This rule is called laws of units. Such rule in which value of many things is obtained in same rate that rule is called "rules of units".

To find the value of many things. If value of one thing is given:

Example: If pen is of Rs 26. Find cost of such 6 pens.

Solution

$$\text{A pen} = 26 \text{ Rupees}$$

$$6 \text{ pen} = 26 \times 6$$

$$= 156 \text{ Rupees}$$

Example: The cost of a watch is 196 then find the cost of such 8 watches.

$$1 \text{ watch} = 196 \text{ Rupees}$$

$$8 \text{ watch} = 196 \times 8$$

$$= 1,568 \text{ Rupees}$$

To find out the cost of a thing if the cost of many things is given:

Example (1): A dozen of eggs is Rs 120: Find the cost of an egg:

$$\text{One Dozen of egg} = 120 \text{ Rupees}$$

$$\text{An egg} = \frac{120}{12} = 10 \text{ Rupees}$$

Example: The cost of 6 books is 480 rupees. Find the price of a book.

$$\text{Cost of 6 books} = 480 \text{ Rupees}$$

$$\text{A book} = \frac{480}{6} = 80 \text{ Rupees}$$

EXERCISE 9.1

Q.1: The cost of a kilo of potatoes is Rs: 56. Find the cost of 7kg potatoes.

Sol: The cost of a kilo potatoes = 56
The cost of 7 kilo potatoes = ?

$$\begin{array}{r} 56 \\ \times 7 \\ \hline 392 \end{array}$$

Ans: The cost of 7 kilo of potatoes is Rs: 392

Q.2: The cost of a pencil is 25 rupees. Find the cost of 6 pencils.

Sol: The cost of a pencil is 25 rupees.
The cost of 6 pencils = ?

$$\begin{array}{r} 25 \\ \times 6 \\ \hline 150 \end{array}$$

Ans: The cost of 6 pencils is Rs: 150

Q.3: Find the cost of 18 eggs if cost of a dozen of eggs is 84 rupees.

Sol: The cost of 18 eggs = ?
The cost of 1 dozen of eggs = 84 rupees.
We know that 1 dozen = 12.

$$\begin{array}{r} 7 \\ 12 \sqrt{84} \\ -84 \\ \hline 00 \end{array}$$

Then:

Divide 84 by 12

$$\begin{array}{r} 84 \div 12 \\ = 7 \end{array}$$

The cost of an egg is Rs: 7 rupees.

Now multiply 18 by 7

$$\begin{array}{r} 18 \\ \times 7 \\ \hline 126 \end{array}$$

Ans: The cost of 18 eggs is Rs: 126 rupees.

Q.4 What is the cost of a shoe pair, if the cost of 15 shoe pair is 900 rupees.

Sol: The cost of a shoe pair = ?

The cost of 15 shoe pairs is 900 rupees.

Divide 900 by 15

$$\begin{array}{r} = 900 \div 152 \\ = 60 \end{array}$$

$$\begin{array}{r} \text{R.W} \\ \begin{array}{r} 60 \\ \times 15 \\ \hline 175 \\ +35 \times \\ \hline 525 \end{array} \\ 15 \overline{)900} \\ \begin{array}{r} -900 \\ \hline 000 \end{array} \end{array}$$

Ans: The cost of 15 shoe pair is Rs: 60 rupees.

Q.5 Find the price of 10 kg of mangoes. When cost of 6 kg mangoes is 360.

Sol: The cost of 10kg of mangoes ?

The price of 6 kg of mangoes is 360.

Then:

Divide the 360 by 6

$$\begin{array}{r} = 360 \div 6 \\ = 60 \end{array}$$

$$\begin{array}{r} \text{R.W} \\ \begin{array}{r} 60 \\ \times 6 \\ \hline 360 \\ -360 \\ \hline 000 \end{array} \\ 6 \overline{)360} \end{array}$$

The price of 1 kg of mangoes = Rs:60

Now multiply 60 by 10

$$\begin{array}{r} = 60 \times 10 \\ = 600 \end{array}$$

Ans: The price of 10 kg of mangoes is Rs: 600.

Q.6 The price of 10 books is 350 rupees. Find the cost of 15 such books.

Sol: The price of 10 books is 350 rupees.

The price of 15 books = ?

Then:

Divide 350 by 10

$$\begin{array}{r} = 350 \div 10 \\ = 35 \end{array}$$

$$\begin{array}{r} \text{R.W} \\ \begin{array}{r} 35 \\ \times 10 \\ \hline 350 \\ -30 \\ \hline 50 \\ -50 \\ \hline 00 \end{array} \\ 10 \overline{)350} \end{array}$$

The price of 1 book is Rs: 35 rupees.

Now multiply 35 by 15

$$\begin{array}{r} = 35 \times 15 \\ = 525 \end{array}$$

Ans: The price of 15 books is Rs: 525 rupees

Q.7 A man makes plaster on wall of 540 meter in 6 days. How much did he plaster in 4 days.

Sol: A man plastered on wall of 540 meters in 6 days. R.W

A man plastered on wall in 4 day = ?

Then:

Divide 540 by 6

$$\begin{array}{r} = 540 \div 6 \\ = 90 \end{array}$$

A man plastered on a wall of 90 meters is one day.

Now multiply 90 by 4

$$\begin{array}{r} = 90 \times 4 \\ = 360 \end{array}$$

Ans: A man plastered on a wall of 360 meters in 4 days.

Q.8 The weight of 15 bags of wheat is 225.50 kg. What will be the weight of such 20 bags?

Sol: The weight of 15 bags of wheat is 225.50kg. R.W

The weight of 20 bags = ?

Then:

Divide 225.50 by 15

$$\begin{array}{r} = 225.50 \div 15 \\ = 15.03 \end{array}$$

The weight of one bag is 15.03kg

Now multiply the 15.03 by 20

$$\begin{array}{r} = 15.03 \times 20 \\ = 300.6 \end{array}$$

Ans: The weight of 20 bags is 300.6 kilogram.

$$\begin{array}{r} \begin{array}{r} 35 \\ \times 15 \\ \hline 175 \\ +35 \times \\ \hline 525 \end{array} \\ 6 \overline{)540} \\ \begin{array}{r} -540 \\ \hline 000 \end{array} \end{array}$$

$$\begin{array}{r} \begin{array}{r} 90 \\ \times 4 \\ \hline 360 \end{array} \\ 90 \overline{)360} \\ \begin{array}{r} -360 \\ \hline 000 \end{array} \end{array}$$

$$\begin{array}{r} \begin{array}{r} 15.03 \\ \times 20 \\ \hline 300.6 \end{array} \\ 15.03 \overline{)300.600} \\ \begin{array}{r} -300 \\ \hline 60 \\ -60 \\ \hline 0 \end{array} \end{array}$$

$$\begin{array}{r} \begin{array}{r} 5 \\ \times 20 \\ \hline 100 \\ -100 \\ \hline 0 \end{array} \\ 5 \overline{)100} \\ \begin{array}{r} -100 \\ \hline 0 \end{array} \end{array}$$

Ratio of two numbers:

Ratio: The relation between like quantity or numbers is called ratio. The ratio of two numbers is denoted by 4:5

Important Information

The symbol of Ratio is “:”

For example: The ratio of ages of Maria and Fatima is 4:1 it means Maria is 4 time older than Fatima.

Proportion: The comparision of two different values or ratios is called proportion. It is denoted by “::”

As: a:b and c:d are two ratios, the proportion of both ratios in a:b::c:d then.

A ratio B properties C ratio d.

Kinds of Proportion:

There are two kinds of proportion.

i) Direct proportion ii) Inverse proportion

Direct Proportion:

If the relation of two ratios is such that one ratio is increased then other is also increased or if the value of a thing is decreased then the value of other thing is also decreased the ratio is called direct proportion.

Example: If the cost of 20 cups is Rs 2000 the find the cost of 40 such cups.

	Cost	Cups
Direct proportion	2000	20
	x	40

$$40 : 20 :: x : 2000$$

$$x \times 20 = 2000 \times 40$$

$$x = \frac{2000 \times 40}{20}$$

$$x = 40000$$

Inverse proportion:

If the relation of two ratios is such that one ratio is increased then after is decreased or the ratio is decreased then other ratio is increased the relation is called inverse proportion.

Example: If 6 men complete a work in 12 days. If 2 men join more then in how many days work will go?

Solution: First men = days :: Total men : day

$$\begin{array}{ll} \text{Total men} & = 6 \\ \text{Two men} & = 2 \\ \text{Total men} & = 6 + 2 = 8 \end{array}$$

$$\begin{array}{ll} & \text{Men} \\ \text{Inverse proportion} & 12 \quad 6 \\ x & 8 \\ 6 : 8 & :: x : 12 \\ x \times 8 & = 12 \times 6 \\ x & = \frac{6 \times 12}{8} \\ x & = 9 \quad \text{Days} \end{array}$$

EXERCISE 9.2

Q.1: Find the value of x when 30:60::9: x

$$\begin{array}{ll} \text{Sol:} & 30 \times x = 60 \times 9 \\ & 30x = 540 \\ & x = \frac{540}{30} \\ & x = 18 \quad \text{Ans:} \end{array}$$

Q.2: 6 men complete a work in 4 days. In how many days it will be completed by 12 man?

Sol: 6 men complete a work in 4 days.

No of day of work by 12 men ?

Let the x is working days if the work is done by 12 men.

Working day	men
4	6
x	12

$$6: 12 :: x : 4$$

$$12 \times x = 6 \times 4$$

$$12x = 24$$

$$x = \frac{24}{12}$$

$$x = 2 \text{ Ans:}$$

Q.3: 15 machines make 6750 sweaters. How many machines are required to make 405?

Sol: 15 machines make 6750 sweaters.

Machines are required to make 4050 sweaters = ?

Let the x machines are required to make 4050 sweaters.

Machines	Sweaters
15	6750
x	4050

$$6750: 4050 :: x : 15$$

$$6750 \times x = 4050 \times 15$$

$$\begin{array}{r} \text{R.W} \\ 6750 \\ \times 15 \\ \hline 33750 \\ 6750 \times \\ \hline 101250 \end{array}$$

$$6750x = 60750$$

$$x = \frac{60750}{6750}$$

$$x = 9 \text{ Ans:}$$

Q.4: The cost of 5 boxes of chalks is Rs 90, Find the cost of 8 boxes of chalks.

Sol: The cost of 5 boxes of chalk is Rs: 90

The cost of 8 boxes of chalk = ?

Let the y is the cost of 8 boxes

$$\begin{array}{rcc} \text{cost} & & \text{prices} \\ 90 & & 5 \\ y & & 8 \\ \hline & & 56.25 \\ 8 & \boxed{450} & \\ & -40 & \\ & \hline & 50 \\ & 48 & \\ & -48 & \\ & \hline & 20 \\ & 16 & \\ & -16 & \\ & \hline & 40 \\ & 40 & \\ & -40 & \\ & \hline & 00 \end{array}$$

$$5: 8 :: y : 90$$

$$5 \times y = 5 \times 90$$

$$5y = 720$$

$$y = \frac{720}{5} = 144$$

$$y = 144 \text{ Ans:}$$

Q.5: A motor cycle covers a distance of 90 km in 2 liters of petrol. How many liters of petrol will require to cover the distance of 225 km.

Sol: A motor cycle a distance of 90 km in 2 litres of petrol.

Petrol will require to cover the distance of 225 km = ?

Let y is the required petrol to cover the distance of 225 km

$$\begin{array}{rcc} \text{petrol} & & \text{distance} \\ 2 & & 90\text{km} \\ y & & 225\text{km} \end{array}$$

$$2 \times 225 = 90 \times y$$

$$90y = 450$$

$$y = \frac{450}{90}$$

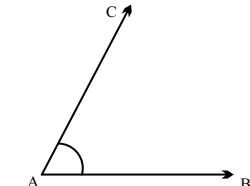
$$y = 5 \text{ Ans:}$$

Q.6 A man covers a distance of 54km in 18 hours. How many kilometer he will cover in 4 hours.

Sol: A man covers a distance of 54km in 18 hours.

Distance cover in 4 hour = ?

Let y is the distance which will be covered in 4 hours.


Time in hours	Distance in km	
18	54	
4	y	R.W
$18 \times y = 54 \times 4$		
$18y = 216$		
$y = \frac{216}{18}$		
$y = 12 \quad \text{Ans:}$		

$$18 \overline{) 216}$$

$$\begin{array}{r} 12 \\ -18 \\ \hline 36 \\ -36 \\ \hline 00 \end{array}$$

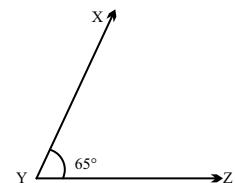
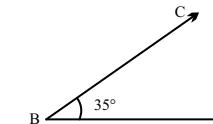
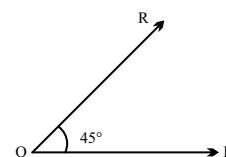
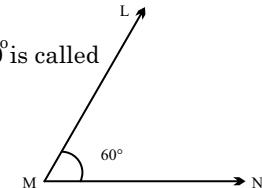
GEOMETRY:

Angle is a diagram that consists of two heads of lines. Here is an angle that is formed by two different lines rays \overrightarrow{AB} and \overrightarrow{AC} . A is the vertex of angle and it is denoted by “ \angle ” i.e $\angle BAC$ or $\angle CAB$.

$\angle BAC$ $\angle CAB$

Important Information

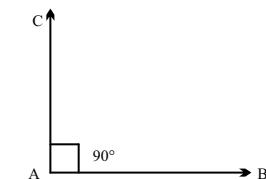
The sign of vertex is written in the middle of other two signs.





Kinds of Angles

Acute angle:

Such angle whose measurement is of less than 90° is called acute angle.

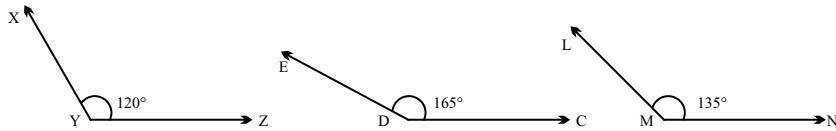
$$m\angle LMN = 60^\circ$$


and other acute angles are under.

Right angle:

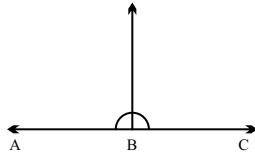
Such angle whose measurement is of 90° is called right angle.

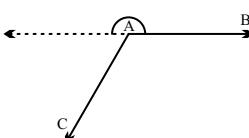
$$m\angle ABC = 90^\circ$$


Obtuse angle:

Such angle whose measurement is greater than 90° and less than 180° is called obtuse angle.

$$m\angle ABC = 90^\circ$$

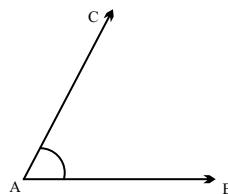

Some obtuse angles are under.


Verticle angle:

Such angle that is formed by perpendicular on base.
A perpendicular makes two right angles on base.
Each verticle angle is 90° and sum of both is 180° .

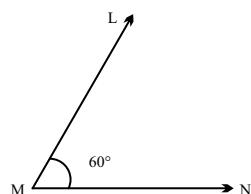
Inversely angle:

Such angle that is formed on opposite of verticle angle or the angle that is measurement of greater than 180° and less than 360° is called inversely angle.

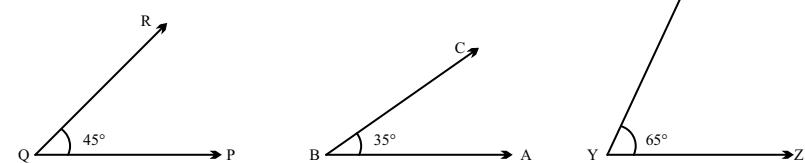


GEOMETRY:

Definitions:

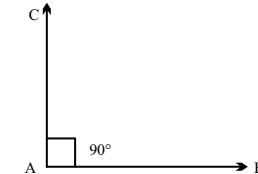

(1) ANGLE:

An angle is a diagram that consists of two heads of lines. Here is an angle that is formed by two different line rays. \overline{AB} and \overline{AC} . A is the ray of angle and it is denoted by \angle .i.e $\angle BAC$ or $\angle CAB$.

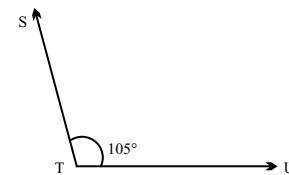


(2) ACUTE ANGLE:

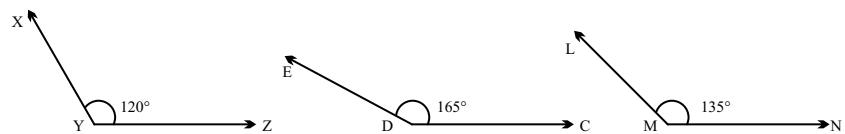
Such angle whose measurement is of less than 90° is known as an acute angle. E.g $m\angle LMN = 60^\circ$.



The other acute angles are as under.

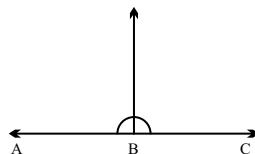

(3) RIGHT ANGLE:

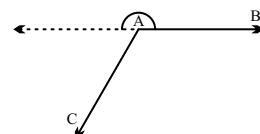
Such angle whose measurement is to 90° is known as right angle.
I.e. $m\angle ABC = 90^\circ$



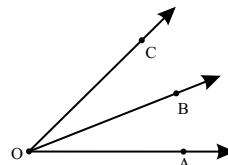
(4) OBTUSE ANGLE:

Such angle whose measurement is greater than 90° and less 180° is known as obtuse angle. I.e. $m\angle ABC = 105^\circ$


Some obtuse angles are as uder.


(5) VERTICLE ANGLE:

Such angle that is formed by perpendicular on base. Is known as verticle angle. A perpendicular makes two right angles on base, Each angle is 90° and the sum of both angle is 180° .


(6) OBTUSE ANGLE:

Such angle that is formed on apposite of verticle angle, or the angle that is measurement of greater than 180° and less than 360° is known as inversely angle.

(7) COMPLEMENTARY ANGLE:

The sum of two or more than two angle is 90° is known as complementary angles.

Here is in $\angle AOB$ and $\angle BOC$ rays in O so that $m \angle ABC$ and $m \angle LMN$ are complementary angle.

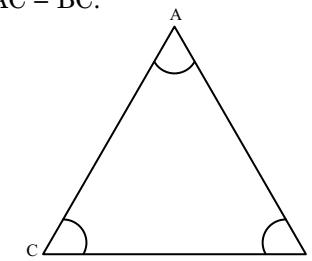
(8) SUPPLEMENTARY ANGLE:

If the sum of two angle is 180° are called supplementary angle i.e.

Then,

$$\begin{aligned} m \angle DEF + m \angle GHI \\ = 105^\circ + 75^\circ \\ = 180^\circ \end{aligned}$$

Hence $m \angle GHI$ and $m \angle DEF$ are supplementary angles.

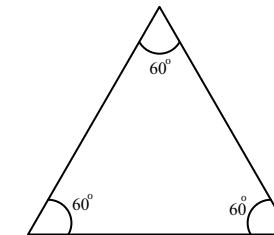

(9) TRIANGLE:

When three different lines are joined each other from head to head, the formed diagram is known as triangle.

OR

The diagram that consists of three sides and three angles is known as triangle.

$$AB = AC = BC.$$


$m \angle ABC$, $m \angle ACB$, $m \angle CBA$. It is denoted by \triangle .

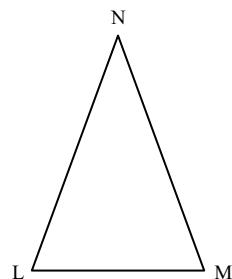
(10) EQUILATERAL TRIANGLE:

Such triangles whose all sides and angles are congruent is known as equilateral triangle.

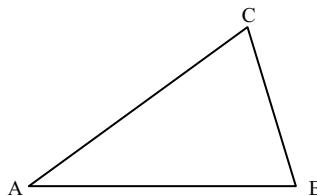
OR

Such triangle whose all sides and angles are equal is known as equilateral triangle.

$\triangle ABC$.


$$m \angle A = m \angle B = m \angle C.$$

(11) ISOSCELES TRIANGLE:


Such triangles whose a pair of sides are different in measurement is known as Isosceles triangle.

i.e. $m \angle M = m \angle N$

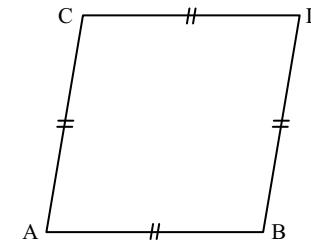
(12) SCALENE TRIANGLE:

Such triangle whose all sides are different in measurement is known as scalene triangle. Here $\triangle ABC$ is a scalene triangle.

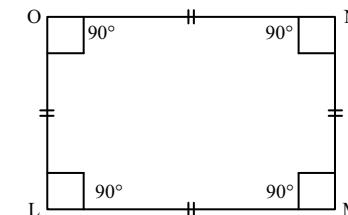
(13) ACUTE ANGLE TRIANGLE:

Such triangle whose all angles are acute is known as acute angled triangle. $\triangle ABC$ is acute angled triangle in which $m\angle A$, $m\angle B$ or $m\angle C < 90^\circ$.

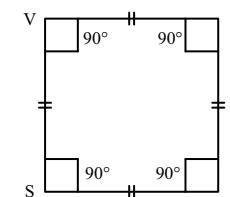
(14) RIGHT ANGLE TRIANGLE:


If an angle of any triangle is right angle the triangle is known as right angled triangle.

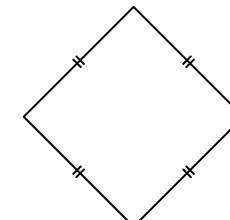
(15) OBTUSE ANGLE TRIANGLE:


If an angle of triangle is obtuse the triangle is known as obtuse angled triangle.

(16) RHOMBUS:

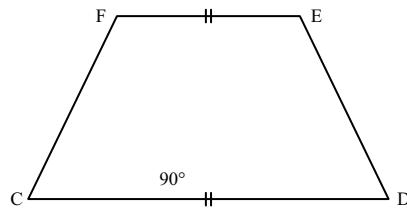

In rhombus all sides are congruent. (Equal). Two angles are acute and two angles are obtuse.

(17) RECTANGLE:


In rectangle the pair sides are congruent (equal). It has four sides. Each angle is right angle. All four sides of 90°

(18) SQUARE:

In Square all sides are congruent (equal). It has four sides. All four sides are of 90° . Each two sides are equal.


(19) KITE:

In kite pairs of adjacent sides are congruent side are equal in pairs. A pair of opposite angle is congruent (same).

(20) TRAPEZOID:

In trapezoid a pair of apposite sides is parallel other pair of sides is different.

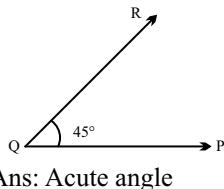
(21) OPEN DIAGRAM:

In open diagram, the boundary is not fixed because of its any one side is open.

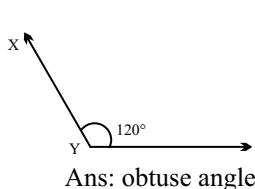
(22) CLOSE DIAGRAM:

In close diagram, the boundary of diagram is fixed from all sides.

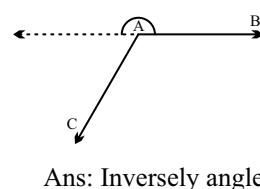
(23) PERIMETER:


The total length of boundary of closed shape is known as perimeter.

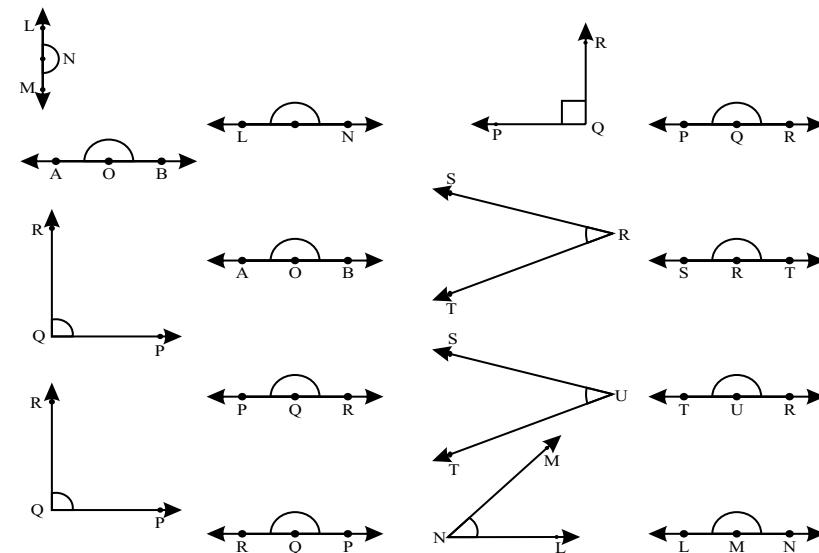
(24) AREA:


The total inner boundary of diagram is called area.

EXERCISE 10.1


Q.1) Give the names on given angles.

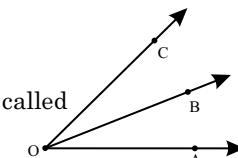
Ans: Acute angle



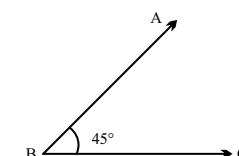
Ans: obtuse angle

Ans: Inversely angle

Q.2: Give the names on angles with respect to diagram.

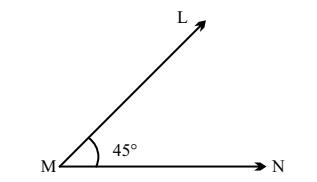


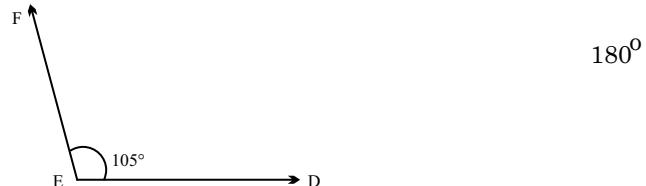
Construction of angles:


Complementary and supplementary angles.

Complementary angles:

The sum of two or more than two angles is of 90° is called complementary angles.


Here is in $\angle AOB$ and $\angle BOC$ ross in "O" so that $m\angle ABC$ and $m\angle LMN$ are complementary.


Supplementary angle:

If the sum of two angles is of 180° are called supplementary angle.

$$\begin{aligned} m\angle ABC &= 45^\circ \text{ and } m\angle LMN = 45^\circ \\ m\angle ABC &= 45^\circ + m\angle LMN = 45^\circ \\ 90^\circ &= 45^\circ + 45^\circ \\ m\angle LMN \text{ and } m\angle ABC & \\ \end{aligned}$$

$$\begin{aligned} m\angle GHI &= 75^\circ \text{ and } m\angle DEF = 105^\circ \\ m\angle DEF + m\angle GHI & \\ 180^\circ &= 105^\circ + 75^\circ \\ m\angle GHI \text{ and } m\angle DEF & \\ \end{aligned}$$

EXERCISE 10.2

i Separate the complementary of angles from the given pairs of angles.

1 <input checked="" type="radio"/> 75°, 15°	2 <input checked="" type="radio"/> 60°, 30°	3 <input checked="" type="radio"/> 10°, 170°	4 <input checked="" type="radio"/> 145°, 75°
5 <input checked="" type="radio"/> 45°, 45°	6 <input checked="" type="radio"/> 145°, 35°	7 <input checked="" type="radio"/> 20°, 70°	8 <input checked="" type="radio"/> 110°, 15°
9 <input checked="" type="radio"/> 50°, 40°	10 <input checked="" type="radio"/> 35°, 60°	11 <input checked="" type="radio"/> 90°, 45°	12 <input checked="" type="radio"/> 135°, 120°

Ans: complimentary of angles from the pairs of angles are

ii Find the complementary angles with addition of two angles.

1 10°

$$\begin{aligned} \text{Sol: } 10^\circ & \\ &= 90^\circ - 10^\circ \\ &= 80^\circ \quad \text{Ans:} \end{aligned}$$

2 30°

$$\begin{aligned} \text{Sol: } 30^\circ & \\ &= 90^\circ - 30^\circ \\ &= 60^\circ \quad \text{Ans:} \end{aligned}$$

3 45°
Sol: 45°
 $= 90^\circ - 45^\circ$
 $= 45^\circ$ Ans:

4 60°
Sol: 60°
 $= 90^\circ - 60^\circ$
 $= 30^\circ$ Ans:

5 55°
Sol: 55°
 $= 90^\circ - 55^\circ$
 $= 35^\circ$ Ans:

6 47°
Sol: 47°
 $= 90^\circ - 47^\circ$
 $= 43^\circ$ Ans:

7 20°
Sol: 20°
 $= 90^\circ - 20^\circ$
 $= 70^\circ$ Ans:

8 80°
Sol: 80°
 $= 90^\circ - 80^\circ$
 $= 10^\circ$ Ans:

iii Find the supplementary angles with addition of two angles.

1 85°
Sol: 85°
 $= 180^\circ - 85^\circ$
 $= 95^\circ$ Ans:

2 110°
Sol: 110°
 $= 180^\circ - 110^\circ$
 $= 70^\circ$ Ans:

3 125°
Sol: 125°
 $= 180^\circ - 125^\circ$
 $= 55^\circ$ Ans:

4 90°
Sol: 90°
 $= 180^\circ - 90^\circ$
 $= 90^\circ$ Ans:

5 50°
Sol: 50°
 $= 180^\circ - 50^\circ$
 $= 130^\circ$ Ans:

6 145°
Sol: 145°
 $= 180^\circ - 145^\circ$
 $= 35^\circ$ Ans:

7 135°

Sol: 135°

$$= 180^\circ - 135^\circ$$

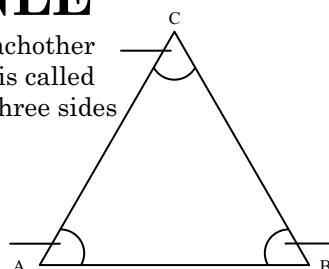
$$= 45^\circ \quad \text{Ans:}$$

8 85°

Sol: 85°

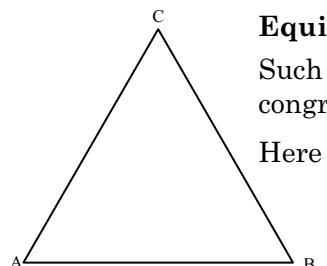
$$= 180^\circ - 85^\circ$$

$$= 95^\circ \quad \text{Ans:}$$


TRIANGLE

When three different lines are joined each other from head to head the formed diagram is called triangle. The diagram that consists of three sides and three angles is called triangle .

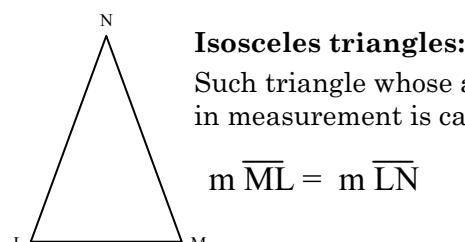
$$AB = AC = AC$$


$$m\angle ABC = m\angle ACB$$

$$- m\angle CBA$$

It is denoted by “ \triangle ”

Types of triangle with respect to sides

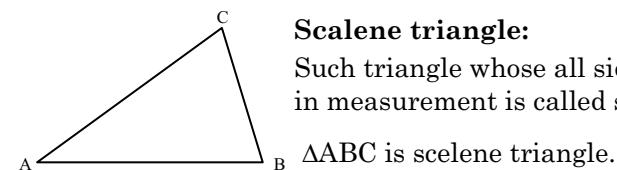

Equilateral triangles:

Such triangle whose all sides and angles are congruent is called equilateral triangle.

$$\text{Here } AB = BC \text{ OR } m\angle A = m\angle C$$

$$\triangle ABC$$

$$mAB = mBC = mAC$$



Isosceles triangles:

Such triangle whose a pair of sides are different in measurement is called isosceles triangle.

$$m\overline{ML} = m\overline{LN}$$

$$\triangle LMN$$

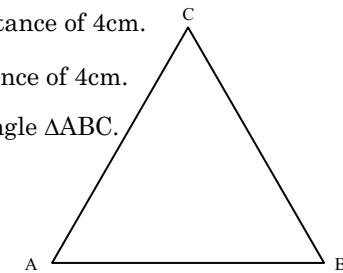
Scalene triangle:

Such triangle whose all sides are different in measurement is called scalene triangle

$\triangle ABC$ is scalene triangle.

$$m\overline{AC} = m\overline{BC} = m\overline{AB}$$

Example: construct a triangle whose all sides are congruent.


Function of Geometry:

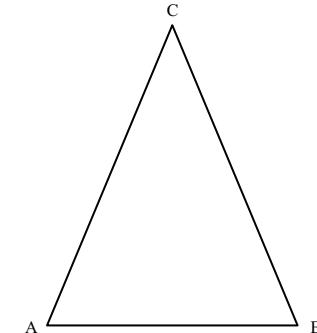
i Draw a line segment $\overline{BC} = 4\text{cm}$.

ii Draw a arc on B with centre at distance of 4cm.

iii Draw a arc with centre at distance of 4cm.

iv Join points A,B and C. Here is triangle $\triangle ABC$.

Function of Geometry


i Draw a line segment of 6cm long.

ii Draw a radius 4.5 cm with the centre of B.

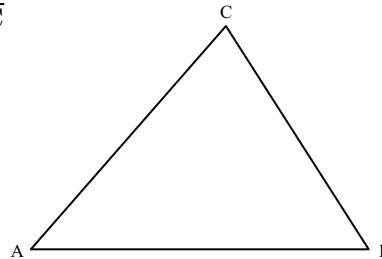
iii Draw an arc of 4.5 cm with \overline{BC} that cuts the first point.

iv Join Points A, B and C.

Here $\triangle ABC$ is Isosceles.

Scalene triangle:

Example: Construct a triangle of measurement of.

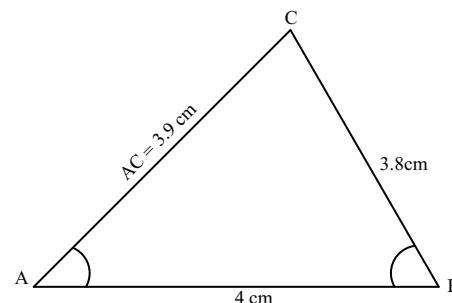

$$mAB = 4\text{ cm}, mBC = 3\text{ cm}, mAC = 3.5\text{ cm}$$

Construction:

i Draw a line segment $m\overline{AB} = 4\text{cm}$.

- ii) Draw an arc $A = 3.5$ cm on \overline{AC}
- iii) Draw an arc $B = 3$ cm on \overline{BC}
- iv) Join points A, B and C.

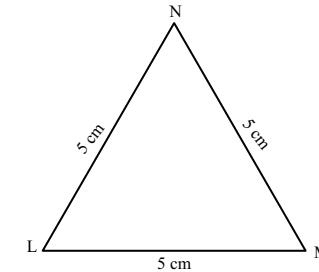
Here is scalene triangle.


EXERCISE 10.3

Q.1: Construct or triangles if possible.

1) $mAB = 4$ cm, $mBC = 3.8$ cm, $mAC = 3.9$ cm

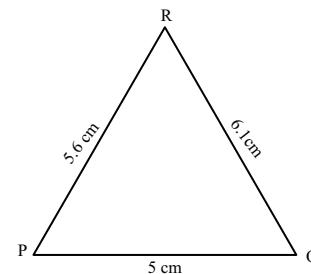
Sol: **Construction:**


- * Draw a line segment $m\overline{AB} = 4$ cm
- * Draw an arc $A = 3.9$ cm on \overline{AC}
- * Draw an arc $B = 3.8$ cm on \overline{BC}
- * Join points, A, B, C.
- * Here $\triangle ABC$ is a required triangle.

2) $mLM = mMN = mNL = 5$ cm

Sol: **Construction:**

- * Draw a line segment $m\overline{LM} = 5$ cm
- * Draw an arc $M = 5$ cm on \overline{MN}
- * Draw an arc $N = 5$ cm on \overline{LN}
- * Join points, L, M, N.
- * Here $\triangle LMN$ is a required triangle.

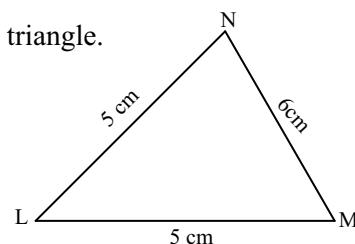


3) $mPQ = 5$ cm, $mQR = 6.1$ cm, $mPR = 5.6$ cm

Sol:

Construction:

- * Draw a line segment $m\overline{PQ} = 5$ cm
- * Draw an arc $Q = 6.1$ cm on \overline{QR}
- * Draw an arc $R = 5.6$ cm on \overline{PR}
- * Join points, P, Q, R.
- * Here $\triangle PQR$ is a required triangle.

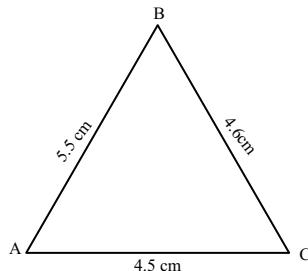


4) $mLM = 5$ cm, $mMN = 5$ cm, $mLN = 6$ cm

Sol:

Construction:

- * Draw a line segment $m\overline{LM} = 5$ cm
- * Draw an arc $M = 5$ cm on \overline{MN}
- * Draw an arc $N = 6$ cm on \overline{LN}
- * Join points, L, M, N.
- * Here $\triangle LMN$ is a required triangle.



5 $mAB = 4.5 \text{ cm}$, $mBC = 5.5 \text{ cm}$, $mAC = 4.6 \text{ cm}$

Sol:

Construction:

- * Draw a line segment $m\overline{AB} = 4.5 \text{ cm}$
- * Draw an arc $B = 5.5 \text{ cm}$ on \overline{BC}
- * Draw an arc $C = 4.6 \text{ cm}$ on \overline{AC}
- * Join points, A, B, C.
- * Here $\triangle ABC$ is a required triangle.

Kinds of triangle with respect to angles

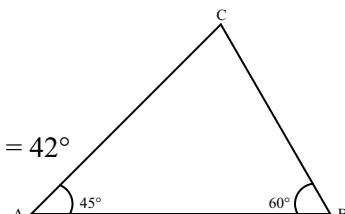
There are three kinds of triangle with respect to angles.

- i Acute angled triangle
- ii Right angled triangle
- iii Obtuse angled triangle

Acute angled triangle:

Such triangle whose all angles are acute is called acute angled triangle.

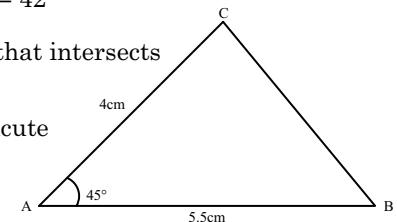
$\triangle ABC$ is acute angled triangle in which


$$m\angle A, m\angle B \text{ or } m\angle C < 90^\circ$$

Example: Construct $\triangle ABC$ is which:

$$mBC = 5.5 \text{ cm}, mAB = 4 \text{ cm}, m\angle B = 42^\circ$$

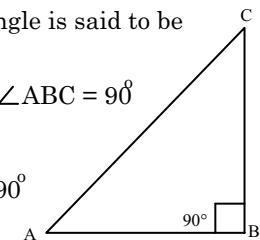
Construction:


- i Draw a line segment $mBC = 5.5 \text{ cm}$

ii Draw an angle on Point B $m\angle B = 42^\circ$

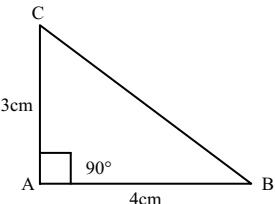
iii Draw an arc BC at the center B that intersects BD on A point

iv Match point A with C $\triangle ABC$ is acute angled triangle.


Right angled triangle:

If an angle of any triangle is right angle the triangle is said to be right angled triangle

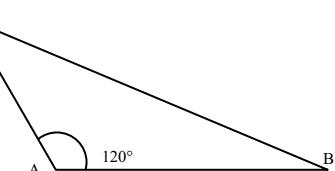
Here $\triangle ABC$ is right angled triangle in which $m\angle ABC = 90^\circ$


Example: Construct a triangle whose sides are

$$m\overline{AB} = 3 \text{ cm}, m\overline{BC} = 3 \text{ cm} \text{ and } m\angle B = 90^\circ$$

Construction:

- i Draw a line $mBC = 4 \text{ cm}$.
- ii Draw an angle $B = 90^\circ$ with the help of protector on point B.
- iii Draw an arc $BC = 3 \text{ cm}$ on B point that intersects BD.
- iv Join point C and A.


Here $\triangle ABC$ is right angled triangle.

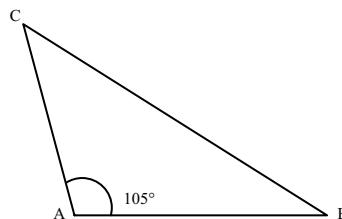
Obtuse angled triangle:

If an angle of triangle is obtuse the triangle is said to be obtuse angled triangle.

Example: Construct an obtuse angled triangle in which.

$$AB = 3.5 \text{ cm}, AC = 2 \text{ m} \text{ and } m\angle A = 105^\circ$$

Construction:


- i Draw a line segment $mBC = 3.5 \text{ cm}$.

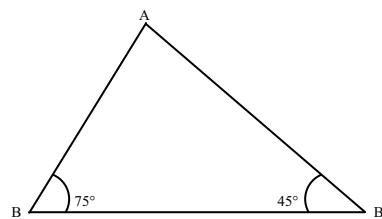
ii Draw an angle of $m\angle B = 105^\circ$ on B point.

iii Draw an arc on C point of 3.5 cm.

iv Join Points A and BC.

Here $\triangle ABC$ is obtuse angled triangle.

EXERCISE 10.4

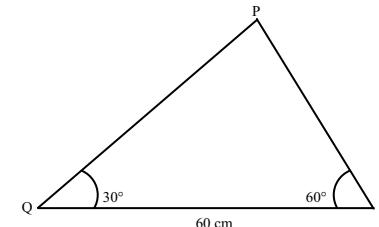

Q.1: Construct the triangles in which:

1 $\triangle ABC$ when $m\angle B = 7\text{ cm}$, $m\angle A = 75^\circ$, $m\angle C = 45^\circ$

Sol:

Construction:

- * Draw a line segment $\overline{BC} = 7\text{ cm}$
- * Draw an angle on $\overline{AB} = 75^\circ$ on B point
- * Draw an angle on $\overline{BC} = 45^\circ$
- * Join points, A and BC.
- * Here $\triangle ABC$ is a required triangle.

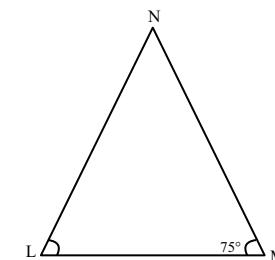


2 $\triangle PQR$ when $m\angle Q = 6\text{ cm}$, $m\angle P = 60^\circ$, $m\angle R = 30^\circ$

Sol:

Construction:

- * Draw a line segment $\overline{QR} = 6\text{ cm}$
- * Draw an angle on $m\angle PQR = 60^\circ$ on Q point
- * Draw an angle on $m\angle PQR = 30^\circ$ on R point.
- * Join points, P and QR points.
- * Here $\triangle PQR$ is a required triangle.

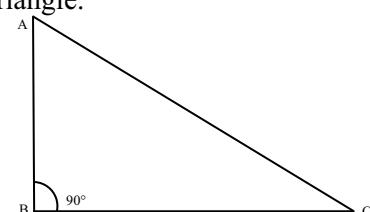


3 $\triangle LMN$ when $m\angle L = 4.5\text{ cm}$, $m\angle M = 6\text{ cm}$, $m\angle N = 75^\circ$

Sol:

Construction:

- * Draw a line segment $\overline{LM} = 4.5\text{ cm}$
- * Draw an angle on $\overline{LM} = 75^\circ$
- * Draw an arc on M point of 6 cm.
- * Join points, L, M and N.
- * Here $\triangle LMN$ is a required triangle.

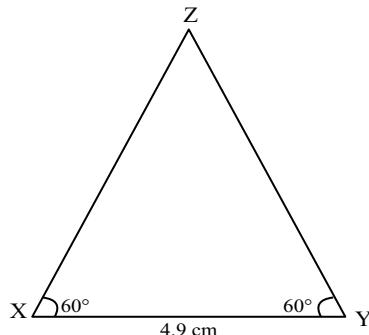


4 $\triangle ABC$ when $m\angle B = 5\text{ cm}$, $m\angle A = 5.5\text{ cm}$, $m\angle C = 90^\circ$

Sol:

Construction:

- * Draw a line segment $\overline{BC} = 5\text{ cm}$.
- * Draw an angle of $m\angle B = 90^\circ$ on point B.
- * Draw an arc on B point of 5.5 cm.
- * Join points, A and BC.
- * Here $\triangle ABC$ is a required triangle.

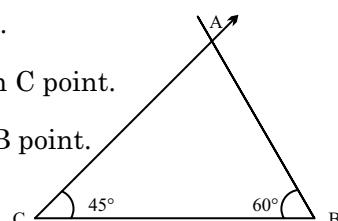


5) $\triangle XYZ$ when $m\overline{XY} = 4.9$ cm, $m\angle XYZ = 60^\circ$, $m\angle XYZ = 60^\circ$

Sol:

Construction:

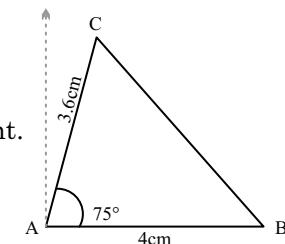
- * Draw a line segment $\overline{XY} = 4.9$ cm.
- * Draw an angle of $\overline{XY} = 60^\circ$ on point Y.
- * Draw an angle $YZ = 60^\circ$ on Y.
- * Join points X, Y and Z.
- * Here $\triangle XYZ$ is a required triangle.


Construct a right angled triangle with the help of scale and protector.

When $m\angle C = 90^\circ$ and $\overline{AB} = 5$ cm.

Example: Construct $\triangle ABC$ when $m\overline{BC} = 4$ cm, $m\angle ACB = 45^\circ$ and $m\angle ABC = 60^\circ$

Construction:


- i Draw a line segment $\overline{BC} = 4$ cm.
- ii Draw an angle $m\angle ABC = 45^\circ$ on C point.
- iii Draw an angle $m\angle ABC = 60^\circ$ on B point.
- iv Joint both angles on point A.

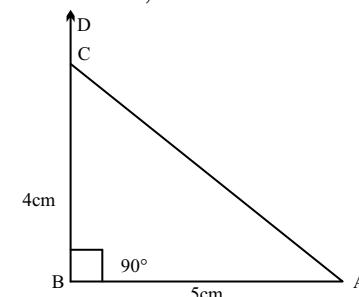
Here $\triangle ABC$ is construct.

Construct acute angled triangle, right angled triangle and obtuse angled triangle.

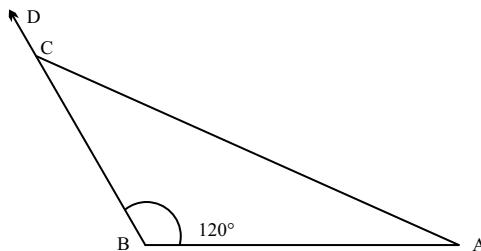
Example: Construct $\triangle ABC$ when $\overline{AB} = 4$ cm, $\overline{BC} = 3.6$.

- i Draw a line segment $\overline{BC} = 4$ cm.
- ii Draw an angle $m\angle ABC = 75^\circ$ on B point.
- iii Draw line segment 3.6 m.
- iv Joint points A and C

Here it is an acute angled triangle.


Example: Construct right angle triangle, in which $\overline{AB} = 5$ cm, $\overline{BC} = 4$ cm and $m\angle ABC = 90^\circ$

Construction:


- i Draw a line segment $\overline{AB} = 5$ cm with point B.
- ii Draw an angle in $\angle ABC = 90^\circ$ m point B.
- iii Draw a line segment $\overline{BC} = 4$ cm an point C.
- iv Join point A and C.

Here $\triangle ABC$ is right angle triangle.

$m\overline{AB} = 6$ cm. $m\overline{BC} = 4$ cm, $m\angle ABC = 120^\circ$

Example: Construct on obtuse angled triangle $\triangle ABC$ in which $\overline{AB} = 6$ cm, $\overline{BC} = 4$ cm, $m\angle ABC = 120^\circ$

Construction:

- Draw a line segment $\overline{AB} = 6\text{cm}$ on point B.
- Draw an angle of 120° on point B.
- Draw a line segment $BC = 4\text{cm}$ on part C.
- Joint points A and C.

Here $\triangle ABC$ is obtuse angled triangle.

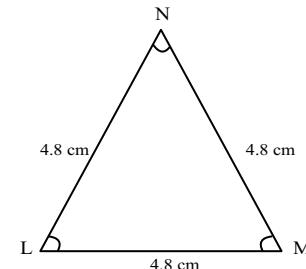
→ **EXERCISE 10.5** ←

Q.3. Make the triangle with the help of scale and protector.

- $\triangle ABC$ when $m\overline{AB} = m\overline{BC} = m\overline{AC} = 5\text{ cm}$

Sol: Construction:

- Make a line segment $\overline{AB} = 5\text{cm}$
- Draw an arc $A = 5$ on \overline{AC}
- Draw an arc $B = 5$ on \overline{BC}
- Join points, A, B and C.
- Here $\triangle ABC$ is the required triangle.

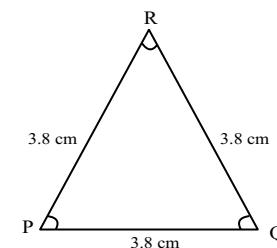


- $\triangle LMN$ when $m\overline{LM} = m\overline{MN} = m\overline{LN} = 4.8\text{ cm}$

Sol:

Construction:

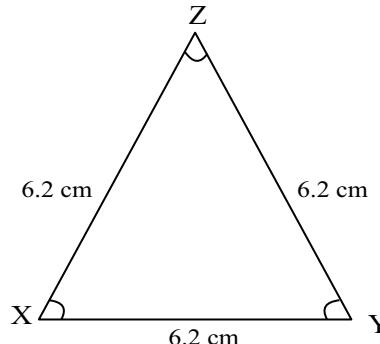
- Make a line segment $\overline{LM} = 4.8\text{ cm}$
- Draw an arc $M = 4.8\text{cm}$ on \overline{MN}
- Draw an arc $N = 4.8\text{cm}$ on \overline{LN}
- Join points, L, M and N.
- Here $\triangle LMN$ is the required triangle.



- $\triangle PQR$ when $m\overline{PQ} = m\overline{QR} = m\overline{RP} = 3.8\text{ cm}$

Sol:

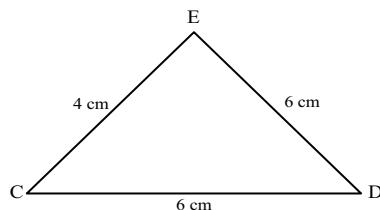
Construction:


- Make a line segment $\overline{PQ} = 3.8\text{ cm}$
- Draw an arc $Q = 3.8\text{cm}$ on \overline{QR}
- Draw an arc $R = 3.8\text{cm}$ on \overline{RP}
- Join points, P, Q and R.
- Here $\triangle PQR$ is the required triangle.

4) $\triangle XYZ$ when $m\overline{XY} = m\overline{YZ} = m\overline{XZ} = 6.2$ cm

Sol: **Construction:**

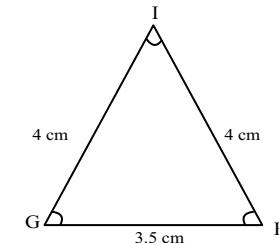
- Make a line segment $\overline{XY} = 6.2$ cm
- Draw an arc $Y = 6.2$ cm on $m\overline{YZ}$
- Draw an arc $Z = 6.2$ cm on \overline{XZ}
- Join points, X, Y and Z.
- Here $\triangle XYZ$ is the required triangle.



Q2) Construct the triangle with the help of scale and protector.

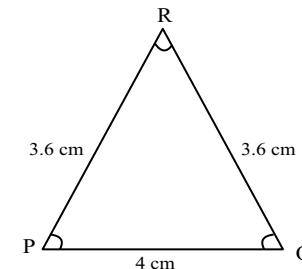
1) $\triangle CDE$ when $m\overline{CD} = 6$ cm, $m\overline{DE} = m\overline{CE} = 4$ cm

Sol: **Construction:**


- Draw a line segment $\overline{CD} = 6$ cm
- Draw an arc $D = 4$ cm on $m\overline{DE}$
- Draw an arc $C = 4$ cm on \overline{CE}
- Join points, C,D and E.
- Here $\triangle CDE$ is the required triangle.

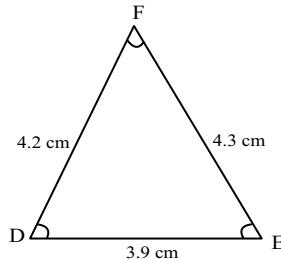
2) $\triangle GHI$ when $m\overline{GH} = 3.5$ cm, $m\overline{HI} = m\overline{GI} = 4$ cm

Sol: **Construction:**


- Draw a line segment $\overline{GH} = 3.5$ cm
- Draw an arc $H = 4$ cm on $m\overline{GI}$
- Draw an arc $G = 4$ cm on \overline{GI}
- Join points, G,H and I.
- Here $\triangle GHI$ is the required triangle.

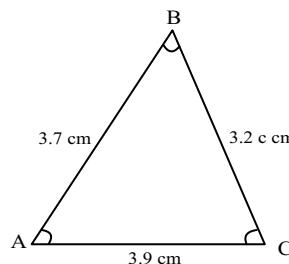
3) $\triangle PQR$ when $m\overline{PQ} = 4$ cm, $m\overline{QR} = m\overline{PR} = 3.6$ cm

Sol: **Construction:**


- Make a line segment $\overline{PQ} = 4$ cm
- Draw an arc $Q = 3.6$ on $m\overline{QR}$
- Draw an arc $P = 3.6$ on \overline{PR}
- Join points, P,Q and R.
- Here $\triangle PQR$ is the required triangle.

4) $\triangle DEF$ when $m\overline{DE} = 3.9$ cm, $m\overline{EF} = 4.3$ cm, $m\overline{DF} = 4.2$ cm

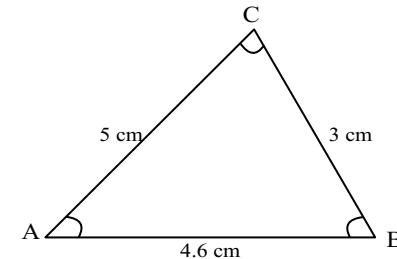
Sol: **Construction:**


- Make a line segment $\overline{DE} = 3.9$ cm
- Draw an arc $E = 4.3$ on $m\overline{EF}$
- Draw an arc $F = 4.2$ on \overline{DF}
- Join points, D, E and F.
- Here $\triangle DEF$ is the required triangle.

5) $\triangle ABC$ when $m\overline{AC} = 3.9$ cm, $m\overline{BC} = 7.2$ cm, $m\overline{AB} = 3.7$ cm

Sol: **Construction:**

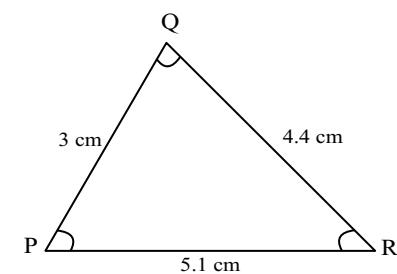
- Make a line segment $\overline{AC} = 3.9$ cm
- Draw an arc $C = 3.2$ cm on $m\overline{BC}$
- Draw an arc $B = 3.7$ cm on \overline{PR}
- Join points, A, B and C.
- Here $\triangle ABC$ is the required triangle.



Q.3. Construct the triangle with the help of scale and protector.

1) $\triangle ABC$ when $m\overline{AB} = 4.6$ cm, $m\overline{BC} = 3$ cm, $m\overline{AC} = 5$ cm

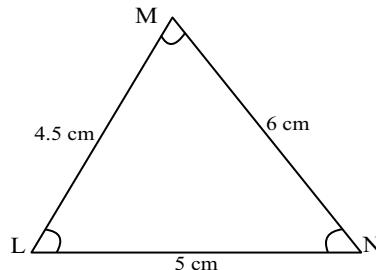
Sol: **Construction:**


- Make a line segment $\overline{AB} = 4.6$ cm
- Draw an arc $B = 3$ cm on $m\overline{BC}$
- Draw an arc $C = 5$ cm on $m\overline{AC}$
- Join points, A, B and C.
- Here $\triangle ABC$ is the required triangle.

2) $\triangle PQR$ when $m\overline{PQ} = 5.1$ cm, $m\overline{QR} = 4.4$ cm, $m\overline{RP} = 3$ cm

Sol: **Construction:**

- Make a line segment $\overline{PQ} = 5.1$ cm
- Draw an arc $Q = 4.4$ cm on $m\overline{QR}$
- Draw an arc $R = 3$ cm on $m\overline{RP}$
- Join points, P, Q and R.
- Here $\triangle PQR$ is the required triangle.

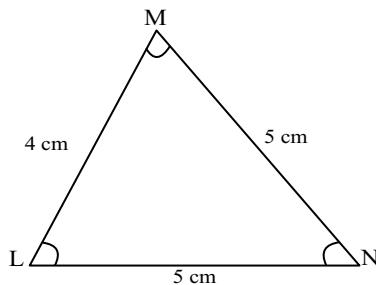


3) $\triangle LMN$ when $m\overline{LM} = 5 \text{ cm}$, $m\overline{MN} = 6 \text{ cm}$, $m\overline{LN} = 4.5 \text{ cm}$

Sol:

Construction:

- Make a line segment $\overline{LM} = 5 \text{ cm}$
- Draw an arc $N = 6 \text{ cm}$ on $m\overline{MN}$
- Draw an arc $L = 4.5 \text{ cm}$ on \overline{LN}
- Join points, L, M and N.
- Here $\triangle LMN$ is the required triangle.

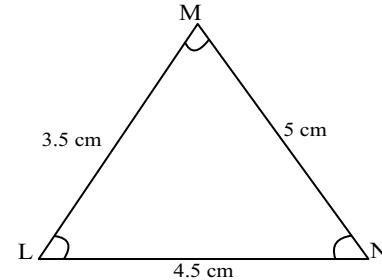


4) $\triangle ABC$ when $m\overline{AB} = 6 \text{ cm}$, $m\overline{BC} = 5 \text{ cm}$, $m\overline{AC} = 4 \text{ cm}$

Sol:

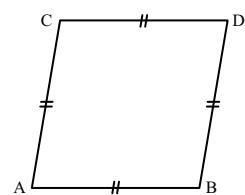
Construction:

- Make a line segment $\overline{AB} = 6 \text{ cm}$
- Draw an arc $B = 5 \text{ cm}$ on $m\overline{BC} = 5 \text{ cm}$
- Draw an arc $C = 4 \text{ cm}$ on $m\overline{AC}$
- Join points, A, B and C.
- Here $\triangle ABC$ is the required triangle.



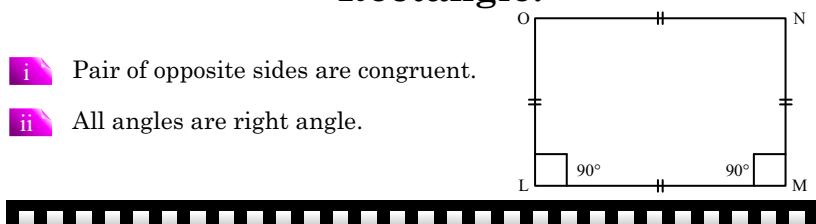
5) $\triangle LMN$ when $m\overline{LM} = 4.5 \text{ cm}$, $m\overline{MN} = 5 \text{ cm}$, $m\overline{LN} = 3.5 \text{ cm}$

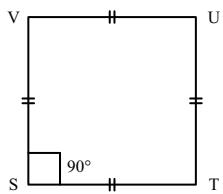
Sol:


Construction:

- Make a line segment $\overline{LM} = 4.5 \text{ cm}$
- Draw an arc $N = 5 \text{ cm}$ on $m\overline{MN}$
- Draw an arc $L = 3.5 \text{ cm}$ on \overline{LN}
- Join points, L, M and N.
- Here $\triangle LMN$ is the required triangle.

Kinds of Quadrilaterals:

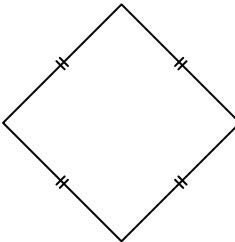

i	Rhombus	ii	Rectangle	iii	Square
iv	Kite	v	Trapezium	vi	Parallelogram



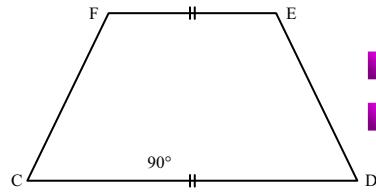
- All sides are congruent.
- Two angles are acute and two are obtuse.

Rectangle:

i	Pair of opposite sides are congruent.
ii	All angles are right angle.

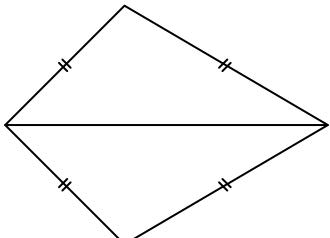


Square:


- i All sides are congruent.
- ii All angles are right angle.

Kite

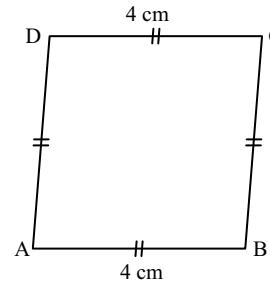
- i Pairs of adjacent sides are congruent.
- ii A pair of opposite angles is congruent.


Trapezoid

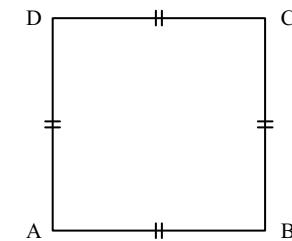
- i A pair of opposite sides is parallel.
- ii Other pair of sides is different.

Kite

- i A pair of opposite sides is parallel.
- ii Other pair of sides is different.
- iii No one angle is right angle.

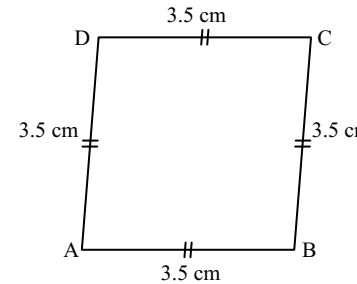


EXERCISE 10.6

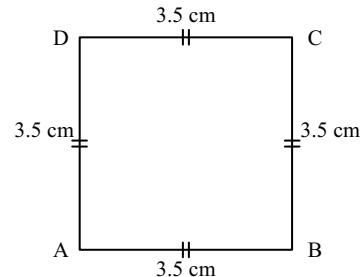

Q.1 Draw a quadrilateral of given measurement of sides with the help of scale and protector.

1 4 cm

* Rhombus:

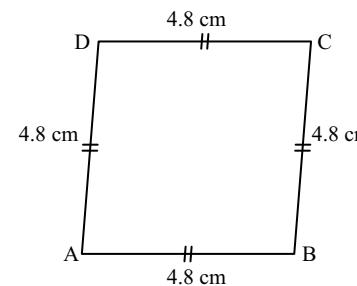


* Square:

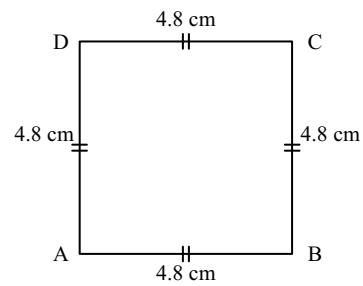


2 3.5 cm

* Rhombus:

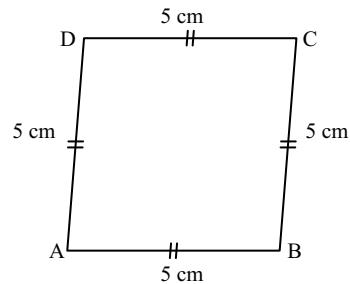


* Square:

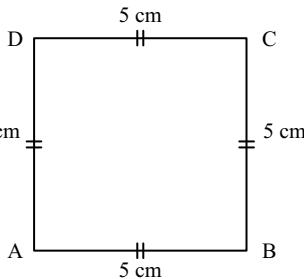


3 4.8 cm

* Rhombus:

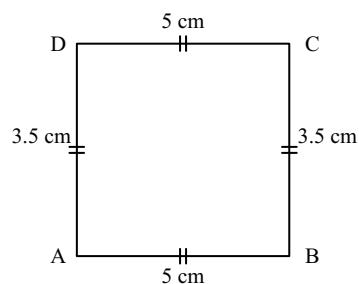


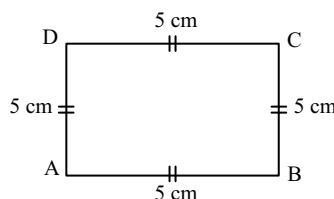
* Square:



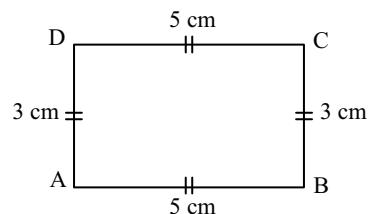
4 5 cm

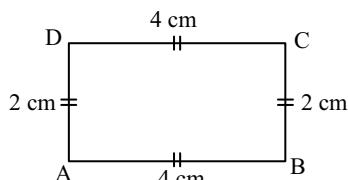
* Rhombus:


* Square:


Q.2* Make a rectangle whose length and width are given.

1 Length = 5cm width = 3.5 cm

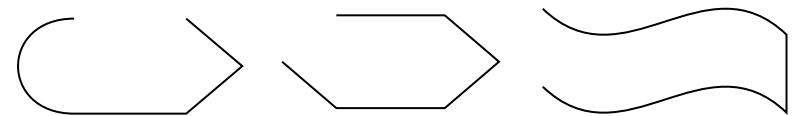

Sol:


2 Length 5.5m width = 2.5 m

3 Length = 6cm, width = 3cm

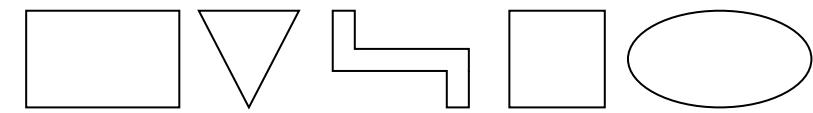
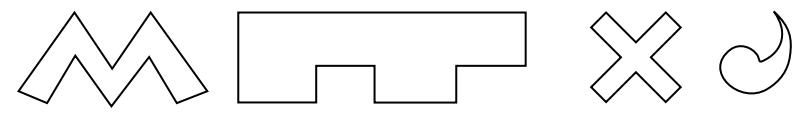
4 Length = 4cm, width = 2cm

PERIMETER AND AREA:


These are two types of diagram in geometry.

i Open diagram

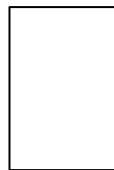
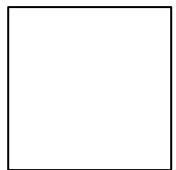
ii Close diagram



Open Diagram:

In open diagram the boundary of diagram is not fixed because of its any one side is open.

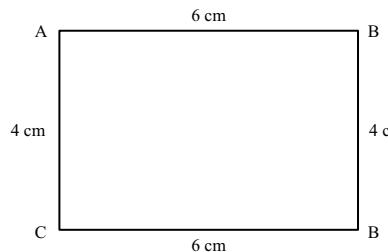
Close Diagram

In close diagram the Boundary of diagram is fixed from all sides.



Subtraction of perimeter and area

Perimeter:

The total length of boundary of closed shape is called perimeter.


Area:

The total inner boundary of diagram is called area.

Example: Find the area and perimeter of rectangular diagram in which length is 6cm and width is 4cm.

Solution:

$$\begin{aligned}
 \text{Length } (l) &= 6 \text{ cm} \\
 \text{Width } (b) &= 4 \text{ cm} \\
 \text{Area} &= 2(l+b) \\
 &= 2(6+4) \\
 &= 2 \times 10 \\
 &= 20 \text{ cm} \\
 \text{Perimeter} &= l+b \\
 &= 6 \times 4 \\
 &= 24 \text{ cm}
 \end{aligned}$$

Important Information

- The unit of perimeter is same as the length.
- We use mm, cm, km as the unit of perimeter.

Important Information

The units of area are meter square, kilometer square and millimeter square.

Example: Find the perimeter and area of square whose length and width = 3cm.

Solution: Perimeter $mAB + mDC + mAD + mBA =$

$$\begin{array}{rcl}
 3 \text{ cm} & & 3\text{cm} + 3\text{cm} + 3\text{cm} + 3\text{cm} = \\
 & & 12\text{cm} = \\
 3 \text{ cm} & & 4 \times = \\
 & & 4 \times 3 = \\
 & & 12\text{cm} = \\
 & & (l) \times (l) = \\
 & & 3 \times 3 = \\
 & & 9\text{cm}^2 =
 \end{array}$$

EXERCISE 11.1

Q.1 Find the perimeter and area square when one side is given.

1 5 cm

Sol:

$$\begin{aligned}
 \text{Perimeter} &= L + L + L + L \\
 \text{Perimeter} &= 5 + 5 + 5 + 5 \\
 \text{Perimeter} &= 20 \text{ cm}
 \end{aligned}$$

$$\begin{aligned}
 \text{Area} &= L \times L \\
 \text{Area} &= 5 \times 5 \\
 \text{Area} &= 25 \text{cm}^2
 \end{aligned}$$

2 6 cm

Sol:

$$\begin{aligned}
 \text{Perimeter} &= L + L + L + L \\
 \text{Perimeter} &= 6 + 6 + 6 + 6 \\
 \text{Perimeter} &= 24 \text{ cm}
 \end{aligned}$$

$$\begin{aligned}
 \text{Area} &= L \times L \\
 \text{Area} &= 6 \times 6 \\
 \text{Area} &= 36 \text{cm}^2
 \end{aligned}$$

3 4.5 cm

Sol:

$$\text{Perimeter} = L + L + L + L$$

$$\text{Perimeter} = 4.5 + 4.5 + 4.5 + 4.5$$

$$\text{Perimeter} = 18 \text{ cm}$$

$$\text{Area} = L \times L$$

$$\text{Area} = 4.5 \times 4.5$$

$$\text{Area} = 20.25 \text{ cm}^2$$

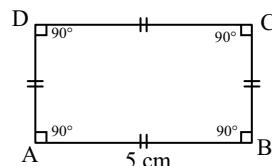
5 6 cm

Sol:

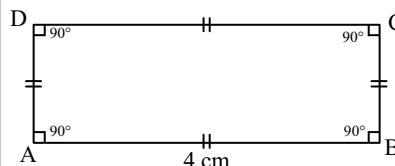
$$\text{Perimeter} = L + L + L + L$$

$$\text{Perimeter} = 6 + 6 + 6 + 6$$

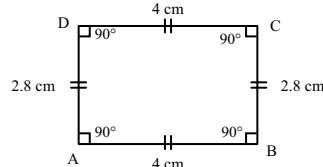
$$\text{Perimeter} = 24 \text{ cm}$$

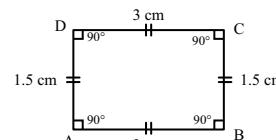

$$\text{Area} = L \times L$$

$$\text{Area} = 6 \times 6$$


$$\text{Area} = 36 \text{ cm}^2$$

Q.2 Construct rectangles with the help of scale, compass and protector whose length and width are given.


1 $l = 5 \text{ cm}$, $b = 2.5 \text{ cm}$


2 $l = 1 \text{ cm}$, $b = 4 \text{ cm}$

3 $l = 4 \text{ cm}$, $b = 2.8 \text{ cm}$

4 $l = 3 \text{ cm}$, $b = 1.5 \text{ cm}$

Q.3 Find the perimeter of a quadrilateral whose length is 12m.

Sol:

$$L = 12 \text{ cm}$$

$$\text{Perimeter} = L + L + L + L$$

$$\text{Perimeter} = 12 + 12 + 12 + 12$$

$$\text{Perimeter} = 48 \text{ cm}$$

Q.4 Find the area of floor of a room, whose length is 8m and width in 6m.

Sol:

$$L = 8 \text{ cm}, W = 6 \text{ m}$$

$$\text{Area} = L \times W$$

$$\text{Area} = 8 \times 6$$

$$\text{Area} = 48 \text{ m}^2$$

Q.5 Find the perimeter and area of class room whose length=5m and width=4m.

Sol:

$$L = 5 \text{ m}, W = 4 \text{ m}$$

$$\text{Area} = L \times W$$

$$\text{Area} = 5 \times 4$$

$$\text{Area} = 20 \text{ m}^2$$

$$\text{Perimeter of rectangle} = 2(L+W)$$

$$\text{Perimeter of rectangle} = 2(5+4)$$

$$\text{Perimeter of rectangle} = 2(9)$$

$$\text{Perimeter of rectangle} = 18$$

Q.6 Find the perimeter and area of rectangle field whose length = 8m and width = 6m.

Sol:

$$L = 8 \text{ m}, W = 6 \text{ m}$$

$$\text{Perimeter of rectangle} = 2(L+W)$$

$$\text{Perimeter of rectangle} = 2(8+6)$$

$$\text{Perimeter of rectangle} = 2(14)$$

$$\text{Perimeter of rectangle} = 28$$

$$\text{Area} = L \times W$$

$$\text{Area} = 8 \times 6$$

$$\text{Area} = 48 \text{ m}^2$$

GENERAL INFORMATION:

Average

Average (Arthmatic mean)

Average is a amount that shows the all values in equal rate.

$$\text{Average} = \frac{\text{Total sum of values}}{\text{Number of values}}$$

Example: Find the average of given numbers 35, 30, 20, 155

$$\begin{aligned}
 \text{Sum of all numbers} &= 35 + 30 + 20 + 15 + 5 \\
 &= 95 \\
 \text{Average} &= \frac{\text{Total of values}}{\text{Number of values}} \\
 &= \frac{95}{5}^{19} \\
 &= 19
 \end{aligned}$$

Example: Find the average of first six even numbers.

$$\begin{aligned}
 \text{Sum of six even number} &= 12 + 10 + 8 + 6 + 4 + 2 \\
 &= 42 \\
 \text{Average} &= \frac{\text{Total of values}}{\text{Number of values}} \\
 &= \frac{42}{6}^{7} \\
 &= 7
 \end{aligned}$$

Example: A car covers a distance of 45km, 60km, 40km and 35km in first second third and fourth hours respectively. Find the average distance per hour.

Solution:

$$\begin{aligned}
 \text{In first hour} &= 45 \text{ k.m} \\
 \text{In second hour} &= 60 \text{ k.m} \\
 \text{In third hour} &= 40 \text{ k.m} \\
 \text{In fourth hour} &= 35 \text{ k.m} \\
 \text{Total distance} &= 45 + 60 + 40 + 35 \\
 \text{Distance} &= 180
 \end{aligned}$$

$$\begin{aligned}
 \text{Average} &= \frac{\text{Total of values}}{\text{Number of values}} \\
 \text{Average} &= \frac{180}{4}^{45} \\
 &= 45 \text{ k.m}
 \end{aligned}$$

→ EXERCISE 12.1 ←

Q.1 Find the average of following:

1 20, 25, 30, 35, 40, 45, 50, 55

Sol:

$$\begin{aligned}
 \text{Average: } & \frac{20 + 25 + 30 + 35 + 40 + 45 + 50 + 55}{8} \\
 &= \frac{300}{8} \\
 \text{Average: } &= 37.5 \text{ Ans:}
 \end{aligned}$$

2 20, 50, 75, 100

Sol:

$$\begin{aligned}
 \text{Average: } & \frac{20 + 50 + 75 + 100}{4} \\
 &= \frac{245}{4} \\
 \text{Average: } &= 61.25 \text{ Ans:}
 \end{aligned}$$

3 300, 250, 400, 300, 350

Sol:

$$\begin{aligned}
 \text{Average: } & \frac{300 + 250 + 400 + 300 + 350}{5} \\
 &= \frac{1,600}{5} \\
 \text{Average: } &= 320 \text{ Ans:}
 \end{aligned}$$

4 6, 8, 10, 12, 14, 16

Sol:

$$\text{Average: } \frac{6 + 8 + 10 + 12 + 14 + 16}{6}$$

$$= \frac{66}{6}$$

Average: = 11 Ans:

5 1, 3, 5, 7, 8

Sol:

$$\text{Average: } \frac{1 + 3 + 5 + 7 + 8}{5}$$

$$= \frac{24}{5}$$

Average: = 4.8 Ans:

6 2.5, 3.5, 4.5, 5.5, 6.5

Sol:

$$\text{Average: } \frac{2.5 + 3.5 + 4.5 + 5.5 + 6.5}{10}$$

$$= \frac{22.5}{10}$$

Average: = 2.25 Ans:

7 8, 10, 14, 21, 25

Sol:

$$\text{Average: } \frac{8 + 10 + 14 + 21 + 25}{5}$$

$$= \frac{78}{5}$$

Average: = 15.6 Ans:

8 100, 75, 25, 20

Sol:

$$\text{Average: } \frac{100 + 75 + 25 + 20}{4}$$

$$= \frac{220}{4}$$

Average: = 55 Ans:

Word Problem:

Q.1 Aisha spends 75, 65, 60 and 85 on Saturday, Sunday Monday and Tuesday respectively. Find his average spent amount.

Sol:

$$\text{Average: } \frac{75 + 65 + 60 + 85}{4}$$

$$= \frac{285}{4}$$

Average: = 71.25 Ans:

Q.2 A bowler takes 7 wickets for 184 runs, Find his each wicket for score.

A bowler 7 wickets for 184 runs
each wicket score =?

$$= \frac{184}{7}$$

$$= 26.285 \text{ Ans:}$$

A bowler each wicket score is 26.285

$$\begin{array}{r}
 26.285 \\
 7 \overline{)184} \\
 -14 \\
 \hline
 44 \\
 -42 \\
 \hline
 20 \\
 -14 \\
 \hline
 60 \\
 -56 \\
 \hline
 40 \\
 -35 \\
 \hline
 00
 \end{array}$$

Q.3 The rate of rain in Lahore in five days is 18.5. Find the rate of rain per day.

Sol:

Rate of rain in Lahore in five days is 18.5

Rate of rain per day =?

$$= \frac{18.5}{5}$$

$$= 3.7 \text{ Ans:}$$

Ans: The rate of rain per day is 3.7

$$\begin{array}{r} 3.7 \\ 5 \overline{)18.5} \\ \underline{-15} \\ 35 \\ \underline{-35} \\ 00 \end{array}$$

Q.4 The income of workman is 6 days is under. Find his average income.

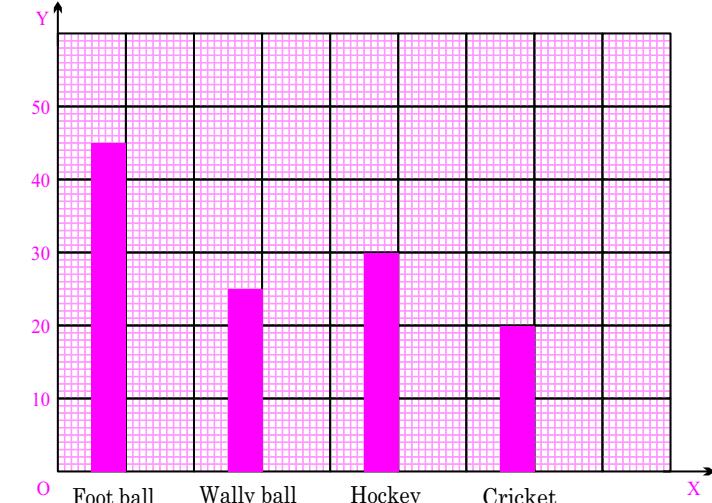
Sol:

The income of workman in days is 3600.

Average income =?

$$= \frac{3600}{6}$$

$$= 600 \text{ Ans:}$$

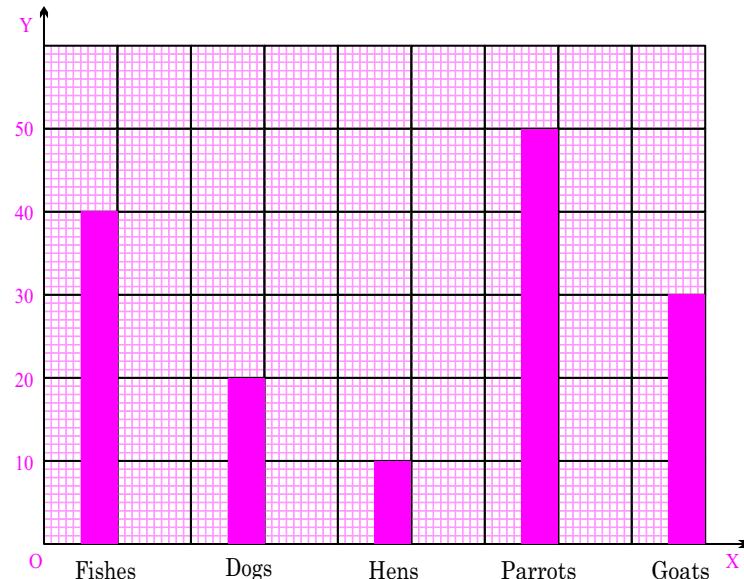

Ans: The average income of a workman is 600.

First day	Second day	Third day	Fourth day	Fifth day	Sixth day
200	350	350	300	420	400

Block or column Graph

Example: Fifth class students play games, show these games in Bar graph or Block graph.

Games	Foot ball	Vallyball	Hockey	Cricket
	45	25	30	20



Give the answers of given questions:

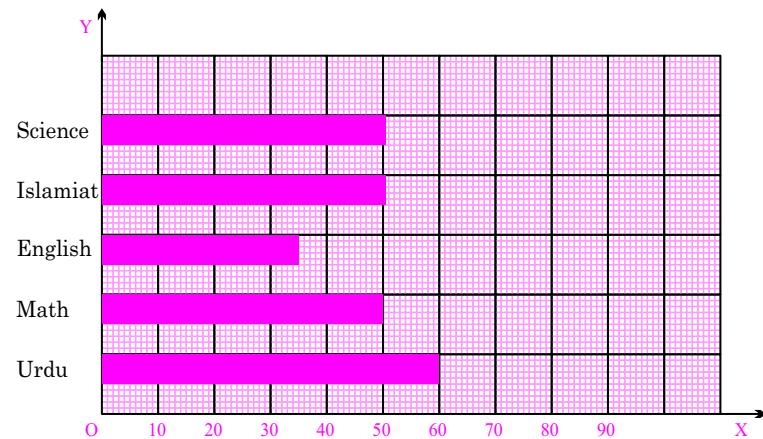
- 1 What is the number of Foot ball games. 45
- 2 What is difference between vallyball and Hockey games. 5
- 3 Which game is most prefer. Foot ball
- 4 Which game is least to played. Cricket

Example: Given table shows the numbers of pets of a place.

Pets	Fishes	Dogs	Hens	Parrots	Goats
	40	20	10	50	30

Give the answer of following questions.

- 1 How much fishes are more than dogs. 20
- 2 How much parrots are more than fishes. 10
- 3 How much goats are more than parrots. 20
- 4 What is the total of pets? 150


Vertical and horizontal bar graph

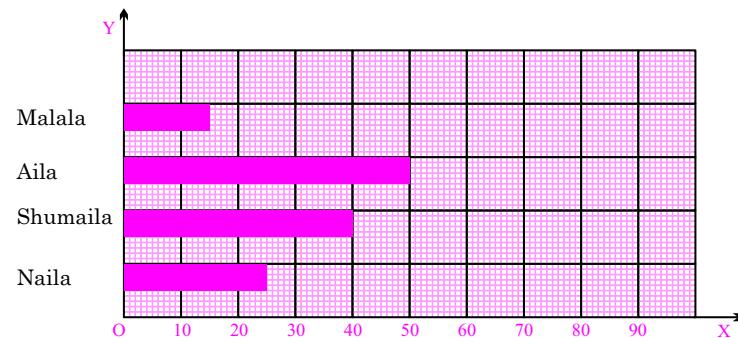
In vertical bar graph, things are shown in rectangle shape which are called bars. There are at same width.

Horizontal bar graph

Activity:

There are 80 students sat in examination of fifth class horizontal bar graph shows the number of student whose passed.

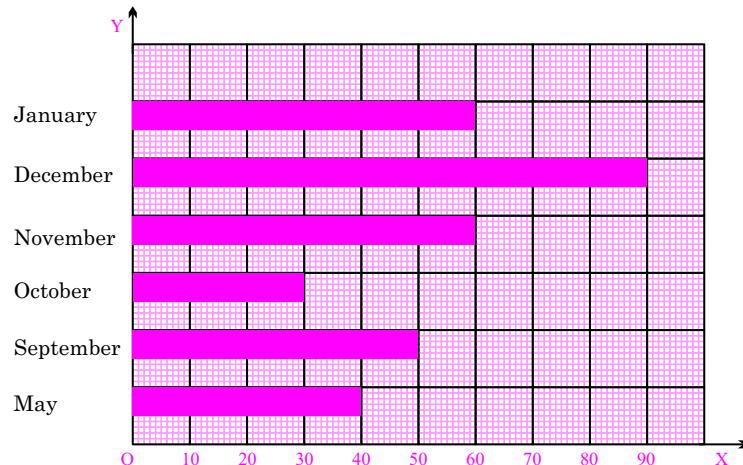
Give the answers of following question.


- 1 In which subjects most of student passed. Urdu
- 2 How much students are passed in Mathematic. S. Students
- 3 In which subject science or English, more student were passed. Science
- 4 How much students were passed in Islamiyat. S Students

Activity:

After the end of Eid holidays Naila, Shumaila, Anila and in horizontal graph.

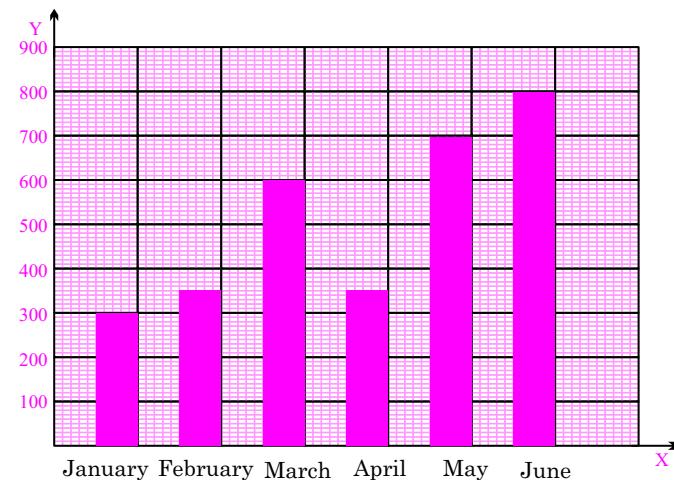
Give the answers of the following questions.


- 1 How much Eid had Naila?

- 2 How much eidi of shumaila was less than Naila's eidi.
- 3 Who have most amount in all.
- 4 Who have least amount in all.
- 5 How much eidi was totally.

15 rupees
Aila
Malala
13 rupees

Activity: The obtained marks of Kashif's examination are under.



Give the answers of following questions.

- 1 Find the total marks of May.
- 2 In which months marks are equal.,
- 3 Find the most number of any month.
- 4 Find the least of marks in any month.
- 5 Show the ratio of September and December.

40 marks
November and January
December
October
40

Activity: The table of expensive of six month of Aisha is given below.

Give the answers of following questions.

- 1 In which month expensive is least in all.
- 2 How much expensive was in February.
- 3 In which months expensive is same.
- 4 In which month the expensive was 6000 rupee.
- 5 What is difference between April and march expensive.

January
350
February and April
March
250

Order of materials

The information of any material is called data It is show in numbers and it is also obtained by direct way.

Example:

Tourists in Pakistan in July 2015 was 975000.

In Lahore There are 255000 students gave examination in 2012.

To set the order of material

There are many methods to collect the materials.

Materials can be collected by pictures, Tables, charts and graphs.

Example: An organizor wants to know the ages of two cricket team player, which are under.

21, 30, 19, 27, 21, 27, 21, 22, 19, 27, 22, 23, 24, 22, 25, 21, 27, 21, 30, 22, 23, 24

19, 19, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 25, 27, 27, 27, 27, 30, 30

In this ways it is easy to collect.

Numbers of players	Telly	In years	Numbers of players	Telly	In years
19	II	2	21	III	5
22	III	4	22	II	2
24	II	2	25	II	2
27	III	4	30	II	2

ANSWERS

Q.1.

1 Twenty million three hundred forty 2 Seven hundred million three hundred one thousand four hundred ninety five. 14 thousand four hundred ten.
 3 Two Hundred forty four million eight hundred seventy three thousand four hundred forty five. 4 Eighty five million eight hundred thousand two hundred thirty seven.
 5 One hundred ninety one million eight hundred twenty five thousand one hundred. 6 Three Hundred twenty seven million sixteen thousand two hundred fifty seven.
 7 Seven hundred five million two hundred forty five thousands one hundred twenty four. 8 Eight hundred seventy six million five thousand four hundred nine.

Q.2.

1 2,404,651 2 2,542,573,034 3 689,819,020 4 9,786,305,401
 5 4,152,562,000 6 3,542,106 7 8,327,000,000 8 4,973,114

EXERCISE 1.2

i 1 7185400 2 140984545 3 586553 4 5535639
 5 7580048 6 120787363 7 53972567 8 85541613
 9 9272263 10 5926627 11 1015137520 12 152030197
 13 848259 14 861144 15 900453 16 811202
 17 1299843 18 1113734 19 1121533 20 1647729
 ii 1 102327444 2 37728390 3 940525 4 68392946
 5 1393942 6 119002465

EXERCISE 1.3

i 1 842489 2 191737 3 351316 4 1121280
 5 553712 6 2152377 7 19318907 8 266599356
 9 22103667 10 117212 11 1793899 12 6672471
 ii 1 459643 2 189512 3 180706 4 400993
 5 216366 6 762697

EXERCISE 1.4

1 91585900 2 267729000 3 19950 4 28091600
 5 44373693 6 35053473 7 128289602 8 12276304
 9 19492880 10 15591625 11 50004240 12 320152575

EXERCISE 1.5

1 4092 2 7823 3 925 4 32717 5 6589 6 7842
 7 1598 8 4598 9 3792 10 4426 11 13347 12 1096
 13 39115.7 14 3865 15 5843

EXERCISE 1.6

1 85 2 2 3 10 4 9 5 5 6 34
 7 2749 8 84 9 42 10 77 11 54 12 101

EXERCISE 1.7

All properties has been proved

EXERCISE 1.8

1 32717 Oranges 2 136.856 Books 3 199989 Rupees 4 19916480 Rupees
 5 225953 Showman 6 223.38 Audience 7 697823 Rupees 8 35156250 Liters
 9 8965 Shoes 10 222013 Rupees

EXERCISE 2.1

1 5 2 5 3 12 4 11 5 24 6 10
 7 23 8 5 9 4 10 21 11 7 12 10
 13 24 14 13 15 1 16 35

EXERCISE 2.2

1 5 2 3 3 48 4 13 5 5 6 11
 7 17 8 6 9 4 10 4 11 4 12 11
 13 13 14 21 15 5 16 48

EXERCISE 2.3

1 900 2 78 3 648 4 1125 5 325 6 144
 7 700 8 8712 9 1950 10 1008 11 216 12 210

EXERCISE 2.4

1 2925 2 108 3 720 4 390 5 60 6 375
 7 576 8 225 9 252 10 960 11 108 12 2565

EXERCISE 2.5

1 60 Oranges 2 12 3 180 4 9
 5 168 6 40 Toffees 7 132 8 2.4 Meters
 9 8 Meters 10 540 Mangoes

EXERCISE 3.1

1 $6\frac{2}{7}$ 2 $\frac{16}{27}$ 3 $\frac{5}{6}$ 4 $\frac{5}{3}$ 5 $\frac{74}{9}$ 6 $\frac{19}{12}$
 7 $\frac{29}{18}$ 8 $\frac{457}{40}$ 9 $\frac{238}{12}$ 10 $\frac{23}{26}$ 11 $\frac{427}{15}$ 12 $\frac{117}{88}$

EXERCISE 3.2

1 $5\frac{22}{35}$ 2 $\frac{19}{20}$ 3 $\frac{17}{4}$ 4 $\frac{1}{4}$ 5 $\frac{7}{24}$ 6 $2\frac{25}{42}$
 7 $\frac{1}{9}$ 8 $1\frac{31}{35}$ 9 $\frac{13}{30}$ 10 $5\frac{5}{24}$ 11 $\frac{11}{21}$ 12 $\frac{1}{10}$

EXERCISE 3.3

1 $2\frac{2}{5}$ 2 $2\frac{7}{10}$ 3 $\frac{5}{14}$ 4 $\frac{9}{11}$ 5 $\frac{33}{490}$ 6 $\frac{3}{4}$
 7 $20\frac{5}{14}$ 8 $\frac{2}{9}$ 9 $\frac{4}{7}$ 10 $\frac{5}{28}$ 11 $13\frac{13}{15}$ 12 $15\frac{5}{6}$

EXERCISE 3.4

All properties has been proved

EXERCISE 3.5

1 $\frac{7}{9}$ Part 2 $\frac{5}{9}$ Part 3 $\frac{11}{15}$ Part 4 5 Minutes 5 1 Minute

EXERCISE 3.6

1 $29\frac{1}{4}$ 2 48 3 $5\frac{3}{8}$ 4 $17\frac{3}{6}$ 5 $15\frac{5}{6}$ 6 $\frac{7}{4}$
 7 $9\frac{19}{60}$ 8 $5\frac{3}{5}$ 9 $2\frac{1}{4}, 1\frac{2}{4}$ 10 $2\frac{2}{5}$

EXERCISE 4.1

1. 7.007 2. 7.422 3. 19.15 4. 4.295 5. 10.0094
 6. 21.4843 7. 99.38 8. 9.796 9. 62.515 10. 6.3197
 11. 5.2256 12. 6.022 13. 8.6968 14. 15.3266 15. 59.3551
 16. 36.694 17. 16.483 18. 10.27

EXERCISE 4.2

1. 40.85 2. 18.39 3. 22.25 4. 82.02 5. 5.19
 6. 8.6918 7. 5.1187 8. 4.9055 9. 4.266 10. 1.3221
 11. 3.1318 12. 10.089 13. 2.2333 14. 1.7894 15. 1.0945

EXERCISE 4.3

1. 177.675 2. 374.43 3. 1033.48 4. 1506.114 5. 7675
 6. 335.31 7. 372 8. 53.85 9. 103.572 10. 18.905
 11. 13675 12. 931752 13. 176.5 14. 171855.21 15. 0.513
 16. 322591.15 17. 35426 18. 125.235 19. 22187.52 20. 37
 21. 2189.125 22. 28763.28 23. 7969.13 24. 0.3525

EXERCISE 4.4

1. 155.213 2. 21.017 3. 19.58 4. 9.3801 5. 3.07
 6. 3.77 7. 17.157 8. 3.618 9. 1.025 10. 1.9328
 11. 1.16775 12. 6.17285 13. 0.0009 14. 17.192 15. 0.0007

EXERCISE 4.5

1. 3.44 2. 115.07 3. 190 4. -3.44 5. 8.055
 6. 30.91 7. 21.19 8. 10.66 9. 11.15 10. 23.98
 11. 77.621 12. 9.43 13. 50.07

EXERCISE 4.6

1. 1. 4.25 2. 10.72 3. 56.19 4. 0.35 5. 55.7
 6. 7.85 7. 9.37 8. 2.73 9. 3.5 10. 3.25
 11. 74.32 12. 35.86

ii. 1. 4.01 2. 0.01 3. 0.86 4. 10.8 5. 5.2
 6. 57.8 7. 5.2 8. 9.3 9. 0.8 10. 57.0
 11. 78.8 12. 18.70

EXERCISE 4.7

1. 0.5 2. 0.12 3. 0.75 4. 3.4 5. 0.375
 6. 0.3125 7. 1.6667 8. 2.14285 9. 3.461 10. 15.625
 11. 0.625 12. 0.85 13. 0.92 14. 0.685 15. 0.41666
 16. 1.3333 17. 1.9090909 18. 0.294117647

EXERCISE 4.8

1. $\frac{7}{10}$ 2. $\frac{9}{2500}$ 3. $\frac{63}{10000}$ 4. $\frac{1}{20}$ 5. $\frac{114}{250}$
 6. $\frac{1207}{250}$ 7. $\frac{29}{1000}$ 8. $\frac{6}{25}$ 9. $\frac{123}{50}$ 10. $\frac{1511}{20}$
 11. $\frac{75}{1000}$ 12. $\frac{281}{250}$ 13. $\frac{212}{25}$ 14. $\frac{4773}{500}$ 15. $\frac{3}{20}$
 16. $\frac{429}{200}$

EXERCISE 4.9

1. 135.05 Km 2. 168.75 Rupees 3. 10.2 Kg 4. 32749.25 Rupees
 5. 21.99 6. 41.07 Meter 7. 9082.2 Meter 8. 289 Rupees

EXERCISE 5.1

i. 1. $\frac{7}{20}$ 2. $\frac{3}{5}$ 3. $\frac{91}{200}$ 4. $\frac{43}{50}$ 5. $\frac{4}{5}$ 6. $\frac{65}{2}$
 7. $\frac{3}{4}$ 8. $\frac{19}{200}$ 9. $\frac{14}{25}$ 10. $\frac{31}{50}$
 ii. 1. 0.64 2. 1.05 3. 1.25 4. 0.23 5. 0.75
 6. 0.65 7. 0.68 8. 1.15 9. 2.05 10. 0.405
 iii. 1. 75% 2. 266.66% 3. 87.5% 4. 37.5% 5. 16.%
 6. 38% 7. 140% 8. 41.667% 9. 52.5% 10. 88.88%
 6. 65% 7. 20% 8. 375% 9. 77.78% 10. 76.19%

→ EXERCISE 6.1 →

1 43 Km 710 m 2 70 Km 679 m 3 48 Km 131 m
 4 53 Km 101 m 5 68 Km 86 m 6 189 Km 121 m
 7 99 Km 67 m 8 116 Km 16 m

→ EXERCISE 6.2 →

1 109 Km 27 mm 2 151 Km 35 m 3 151 KM, 35 mm
 4 2 M, 7 dM, 5 cm 5 1 Km 992m 6 24 Km 65 m
 7 6 Km 997 m 8 9 Km 30 m

→ EXERCISE 6.3 →

1 12 m 10 cm 2 585Km 67 m 3 1 Km 700 m
 4 1 m 62 cm 5 11 m 48 cm

→ EXERCISE 7.1 →

i 1 240 Minutes 2 450 Minutes 3 190 Minutes 4 480 Minutes
 ii 1 600 Seconds 2 300 Seconds 3 2110 Seconds 4 1515 Seconds
 iii 1 11.25 hours 2 60 h 65 m 3 8.53 hours 4 5.7 hours
 5 2.083 hours 6 4.5 hours 7 12 hours 8 7 hours
 iv 1 7.5 years 2 4 Year 6 Month 3 1 Year 1 Month 4 10 Year
 5 6 Year 3 Month 6 1 Year 9 Month 7 10.66 years 8 38.33 years
 v 1 42 Days 2 88 Days 3 602 Days 4 59 Days
 5 72 Days 6 315 Days 7 18 Days 8 147 Days

→ EXERCISE 7.2 →

i 1 76 Minutes 29 Seconds 2 48Minutes 4 Seconds 3 61 Minutes 25 Seconds
 4 62 Minutes 23 Seconds 5 6 Minutes 37 Seconds
 ii 1 19 Minutes 39 Seconds 2 5 Minutes 55 Seconds 3 7 Minutes 7 Seconds
 4 12 hours, 6 minutes 5 55Minutes

→ EXERCISE 7.3 →

1 6 years 9 months 2 20 Minutes takes Fatima 3 15 Minutes 4 9 Days

→ EXERCISE 8.1 →

i 1 140° F 2 284° F 3 122° F 4 239° F 5 113° F
 6 95° F 7 176° F 8 158° F 9 77° F 10 149° F
 11 248° F 12 203° F 13 410° F 14 293° F 15 212° F

 ii 1 60° C 2 90° C 3 15° C 4 10° C 5 110° C
 6 75° C 7 80° C 8 40° C 9 30° C 10 35° C
 11 25° C 12 85° C 13 210° C 14 14° C 15 160° C
 16 50° C 17 20° C 18 225° C 19 115° C 20 90° C

→ EXERCISE 8.2 →

1 90° C 2 60° F 3 77° F 4 80° C 5 35° F

→ EXERCISE 9.1 →

1 392 Rupees 2 150 Rupees 3 126 Rupees 4 60 Rupees
 5 600 Rupees 6 525 Rupees 7 360 Meter 8 300.6 Kilogram

→ EXERCISE 9.2 →

1 18 2 2 Days 3 9 Machines
 4 194 Rupees 5 5 Liters 6 12 Kilometer